• Previous Article
    Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization
  • JIMO Home
  • This Issue
  • Next Article
    Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements
2013, 9(3): 621-630. doi: 10.3934/jimo.2013.9.621

Generalized weak sharp minima of variational inequality problems with functional constraints

1. 

School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu, China

2. 

Rear services office, Chongqing Police College, Chongqing, China

3. 

College of Mathematics and Statistics, Chongqing University, Chongqing, 401331

4. 

School of Economics and Business Administration, Chongqing University, Chongqing, China

Received  April 2012 Revised  March 2013 Published  April 2013

In this paper, the notion of generalized weak sharp minima is introduced for variational inequality problems with functional constraints in finite-dimensional spaces by virtue of a dual gap function. Some equivalent and necessary conditions for the solution set of the variational inequality problems to be a set of generalized weak sharp minima are obtained.
Citation: Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621
References:
[1]

A. Auslender, Asymptotic analysis for penalty and barrier methods in variational inequalities,, SIAM J. Control Optim., 37 (1999), 653. doi: 10.1137/S0363012996310909.

[2]

A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone,, Optim. Methods Softw., 18 (2003), 359. doi: 10.1080/1055678031000122586.

[3]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problem,", Springer-Verlag, (2000).

[4]

J. V. Burke and S. Deng, Weak sharp minima revisited, part I: Basic theory,, Control and Cybernetics, 31 (2002), 439.

[5]

J. V. Burke and S. Deng, Weak sharp minima revisited, part II: Application to linear regularity and error bounds,, Math. Program., 104 (2005), 235. doi: 10.1007/s10107-005-0615-2.

[6]

J. V. Burke and S. Deng, Weak sharp minima revisited, part III: Error bounds for differentiable convex inclusions,, Math. Program., 116 (2009), 37. doi: 10.1007/s10107-007-0130-8.

[7]

J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming,, SIAM J. Control and Optim., 31 (1993), 1340. doi: 10.1137/0331063.

[8]

J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimaztion,, Math. Program., 71 (1995), 179. doi: 10.1007/BF01585997.

[9]

J. M. Danskin, The theory of min-max with applications,, SIAM J. Appl. Math., 14 (1966), 641. doi: 10.1137/0114053.

[10]

S. Deng and X. Q. Yang, Weak sharp minima in multicriteria linear programming,, SIAM J. Optim., 15 (2004), 456. doi: 10.1137/S1052623403434401.

[11]

S. Deng, Some remarks on finite termination of descent methods,, Pacific Journal of Optimization, 1 (2005), 19.

[12]

M. C. Ferris, "Weak Sharp Minima and Penalty Functions in Mathematical Programming,", Ph. D thesis, (1988).

[13]

M. C. Ferris, Iterative linear programming solution of convex programs,, J. Optim. Therory Appl., 65 (1990), 53. doi: 10.1007/BF00941159.

[14]

M. C. Ferris, Finite termination of the proximal point algorithm,, Math. Program., 50 (1991), 359. doi: 10.1007/BF01594944.

[15]

R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions,, J. Math. Anal. Appl., 258 (2001), 110. doi: 10.1006/jmaa.2000.7363.

[16]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,, Math. Program., 48 (1990), 161. doi: 10.1007/BF01582255.

[17]

B. S. He, H. Yang and C. S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, Eur. J. Oper. Res., 159 (2004), 35. doi: 10.1016/S0377-2217(03)00385-0.

[18]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671. doi: 10.3934/jimo.2007.3.671.

[19]

A. S. Lewis and J. S. Pang, Error bounds for convex inequality systems,, in, (1996). doi: 10.1007/978-1-4613-3341-8_3.

[20]

C. Li and X. Wang, On convergence of the gauss-Netow method of convex composite optimization,, Math. Program., 91 (2002), 349. doi: 10.1007/s101070100249.

[21]

Laura J. Kettner and S. Deng, On well-posedness and hausdorff convergence of solution sets of vector optimization problems,, J. Optim. Theory Appl., 153 (2012), 619. doi: 10.1007/s10957-011-9947-7.

[22]

M. Studniarski, Weak sharp minima in multiobjective optimiation,, Control and Cybernetics, 36 (2007), 925.

[23]

M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming,, in, 396 (1999), 207.

[24]

P. Marcotte and D. L. Zhu, Weak sharp solutions of variational inequalities,, SIAM J. Optim., 9 (1998), 179. doi: 10.1137/S1052623496309867.

[25]

P. Marcotte and D. L. Zhu, Erratum: Weak sharp solutions of variational inequalities,, SIAM J. Optim., 10 (2000), 942. doi: 10.1137/S1052623499360616.

[26]

B. T. Polyak and Sharp Minima, Institue of control sciences lecture notes, Moscow, USSR, 1979;, Presented at the IIASA workshop om generalized lagrangians and their applications, (1979).

[27]

Z. L. Wu and S. Y. Wu, Weak sharp solutions of variational inequalities in Hilbert spaces,, SIAM J. Optim., 14 (2004), 1011. doi: 10.1137/S1052623403421486.

[28]

Z. L. Wu and S. Y. Wu, Gâteaux differentiability of the dual gap function of a variational inequality,, Eur. J. Oper. Res., 190 (2008), 328. doi: 10.1016/j.ejor.2007.06.024.

[29]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for semi-infinite optimization problems with applications,, SIAM J. Optim., 18 (2007), 573. doi: 10.1137/060670213.

[30]

X. Y. Zheng and X. Q. Yang, Global weak sharp minima for convex (semi-)infinite optimization problems,, J. Math. Anal. Appl., 348 (2008), 1021. doi: 10.1016/j.jmaa.2008.07.052.

[31]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for piecewise linear multiobjective optimization in normed spaces,, Nonlinear Anal., 68 (2008), 3771. doi: 10.1016/j.na.2007.04.018.

[32]

X. Y. Zheng and K. F. Ng, Strong KKT conditions and weak sharp minima in convex-composite optimization,, Math. Program., (2009).

[33]

J. Z. Zhang, C. Y. Wang and N. H. Xiu, The dual gap function for variational inequalities,, Appl. Math. Optim., 48 (2003), 129. doi: 10.1007/s00245-003-0771-9.

[34]

T. Larsson and M. Patriksson, A class of gap functions for variational inequalities,, Math. Program., 64 (1994), 53. doi: 10.1007/BF01582565.

[35]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations,, Acta Math., 105 (1966), 271. doi: 10.1007/BF02392210.

[36]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley Sons, (1983).

[37]

R. T. Rockafellar, "Convex Analysis, Princeton University Press,", Princeton, (1970).

[38]

R. T. Rockafellar, "Conjugate Duality and Optimization,", SIAM, (1974).

[39]

S. S. Chang, "Variational Inequality and Complementarity Problem Theory with Applications,", Shanghai Sci. and Tech. Literature Publishing House, (1991).

show all references

References:
[1]

A. Auslender, Asymptotic analysis for penalty and barrier methods in variational inequalities,, SIAM J. Control Optim., 37 (1999), 653. doi: 10.1137/S0363012996310909.

[2]

A. Auslender, Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone,, Optim. Methods Softw., 18 (2003), 359. doi: 10.1080/1055678031000122586.

[3]

J. F. Bonnans and A. Shapiro, "Perturbation Analysis of Optimization Problem,", Springer-Verlag, (2000).

[4]

J. V. Burke and S. Deng, Weak sharp minima revisited, part I: Basic theory,, Control and Cybernetics, 31 (2002), 439.

[5]

J. V. Burke and S. Deng, Weak sharp minima revisited, part II: Application to linear regularity and error bounds,, Math. Program., 104 (2005), 235. doi: 10.1007/s10107-005-0615-2.

[6]

J. V. Burke and S. Deng, Weak sharp minima revisited, part III: Error bounds for differentiable convex inclusions,, Math. Program., 116 (2009), 37. doi: 10.1007/s10107-007-0130-8.

[7]

J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming,, SIAM J. Control and Optim., 31 (1993), 1340. doi: 10.1137/0331063.

[8]

J. V. Burke and M. C. Ferris, A Gauss-Newton method for convex composite optimaztion,, Math. Program., 71 (1995), 179. doi: 10.1007/BF01585997.

[9]

J. M. Danskin, The theory of min-max with applications,, SIAM J. Appl. Math., 14 (1966), 641. doi: 10.1137/0114053.

[10]

S. Deng and X. Q. Yang, Weak sharp minima in multicriteria linear programming,, SIAM J. Optim., 15 (2004), 456. doi: 10.1137/S1052623403434401.

[11]

S. Deng, Some remarks on finite termination of descent methods,, Pacific Journal of Optimization, 1 (2005), 19.

[12]

M. C. Ferris, "Weak Sharp Minima and Penalty Functions in Mathematical Programming,", Ph. D thesis, (1988).

[13]

M. C. Ferris, Iterative linear programming solution of convex programs,, J. Optim. Therory Appl., 65 (1990), 53. doi: 10.1007/BF00941159.

[14]

M. C. Ferris, Finite termination of the proximal point algorithm,, Math. Program., 50 (1991), 359. doi: 10.1007/BF01594944.

[15]

R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions,, J. Math. Anal. Appl., 258 (2001), 110. doi: 10.1006/jmaa.2000.7363.

[16]

P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications,, Math. Program., 48 (1990), 161. doi: 10.1007/BF01582255.

[17]

B. S. He, H. Yang and C. S. Zhang, A modified augmented Lagrangian method for a class of monotone variational inequalities,, Eur. J. Oper. Res., 159 (2004), 35. doi: 10.1016/S0377-2217(03)00385-0.

[18]

X. X. Huang and X. Q. Yang, Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints,, J. Ind. Manag. Optim., 3 (2007), 671. doi: 10.3934/jimo.2007.3.671.

[19]

A. S. Lewis and J. S. Pang, Error bounds for convex inequality systems,, in, (1996). doi: 10.1007/978-1-4613-3341-8_3.

[20]

C. Li and X. Wang, On convergence of the gauss-Netow method of convex composite optimization,, Math. Program., 91 (2002), 349. doi: 10.1007/s101070100249.

[21]

Laura J. Kettner and S. Deng, On well-posedness and hausdorff convergence of solution sets of vector optimization problems,, J. Optim. Theory Appl., 153 (2012), 619. doi: 10.1007/s10957-011-9947-7.

[22]

M. Studniarski, Weak sharp minima in multiobjective optimiation,, Control and Cybernetics, 36 (2007), 925.

[23]

M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming,, in, 396 (1999), 207.

[24]

P. Marcotte and D. L. Zhu, Weak sharp solutions of variational inequalities,, SIAM J. Optim., 9 (1998), 179. doi: 10.1137/S1052623496309867.

[25]

P. Marcotte and D. L. Zhu, Erratum: Weak sharp solutions of variational inequalities,, SIAM J. Optim., 10 (2000), 942. doi: 10.1137/S1052623499360616.

[26]

B. T. Polyak and Sharp Minima, Institue of control sciences lecture notes, Moscow, USSR, 1979;, Presented at the IIASA workshop om generalized lagrangians and their applications, (1979).

[27]

Z. L. Wu and S. Y. Wu, Weak sharp solutions of variational inequalities in Hilbert spaces,, SIAM J. Optim., 14 (2004), 1011. doi: 10.1137/S1052623403421486.

[28]

Z. L. Wu and S. Y. Wu, Gâteaux differentiability of the dual gap function of a variational inequality,, Eur. J. Oper. Res., 190 (2008), 328. doi: 10.1016/j.ejor.2007.06.024.

[29]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for semi-infinite optimization problems with applications,, SIAM J. Optim., 18 (2007), 573. doi: 10.1137/060670213.

[30]

X. Y. Zheng and X. Q. Yang, Global weak sharp minima for convex (semi-)infinite optimization problems,, J. Math. Anal. Appl., 348 (2008), 1021. doi: 10.1016/j.jmaa.2008.07.052.

[31]

X. Y. Zheng and X. Q. Yang, Weak sharp minima for piecewise linear multiobjective optimization in normed spaces,, Nonlinear Anal., 68 (2008), 3771. doi: 10.1016/j.na.2007.04.018.

[32]

X. Y. Zheng and K. F. Ng, Strong KKT conditions and weak sharp minima in convex-composite optimization,, Math. Program., (2009).

[33]

J. Z. Zhang, C. Y. Wang and N. H. Xiu, The dual gap function for variational inequalities,, Appl. Math. Optim., 48 (2003), 129. doi: 10.1007/s00245-003-0771-9.

[34]

T. Larsson and M. Patriksson, A class of gap functions for variational inequalities,, Math. Program., 64 (1994), 53. doi: 10.1007/BF01582565.

[35]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations,, Acta Math., 105 (1966), 271. doi: 10.1007/BF02392210.

[36]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", John Wiley Sons, (1983).

[37]

R. T. Rockafellar, "Convex Analysis, Princeton University Press,", Princeton, (1970).

[38]

R. T. Rockafellar, "Conjugate Duality and Optimization,", SIAM, (1974).

[39]

S. S. Chang, "Variational Inequality and Complementarity Problem Theory with Applications,", Shanghai Sci. and Tech. Literature Publishing House, (1991).

[1]

Adela Capătă. Optimality conditions for strong vector equilibrium problems under a weak constraint qualification. Journal of Industrial & Management Optimization, 2015, 11 (2) : 563-574. doi: 10.3934/jimo.2015.11.563

[2]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[3]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[4]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[5]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[6]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[7]

Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701

[8]

X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671

[9]

Zhengyong Zhou, Bo Yu. A smoothing homotopy method based on Robinson's normal equation for mixed complementarity problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 977-989. doi: 10.3934/jimo.2011.7.977

[10]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2018116

[11]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[12]

Ren-You Zhong, Nan-Jing Huang. Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 261-274. doi: 10.3934/naco.2011.1.261

[13]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[14]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[15]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[16]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[17]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[18]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

[19]

Jen-Yen Lin, Hui-Ju Chen, Ruey-Lin Sheu. Augmented Lagrange primal-dual approach for generalized fractional programming problems. Journal of Industrial & Management Optimization, 2013, 9 (4) : 723-741. doi: 10.3934/jimo.2013.9.723

[20]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]