2013, 9(3): 549-560. doi: 10.3934/jimo.2013.9.549

American type geometric step options

1. 

School of Science, Hebei University of Technology, Tianjin, China

2. 

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong

Received  October 2011 Revised  September 2012 Published  April 2013

The step option is a special contact whose value decreases gradually in proportional to the spending time outside a barrier of the asset price. European step options were introduced and studied by Linetsky [11] and Davydov et al. [2]. This paper considers American step options, including perpetual case and finite expiration time case. In perpetual case, we find that the optimal exercise time is the first crossing time of the optimal level. The closed price formula for perpetual step option could be derived through Feynman-Kac formula. As for the latter, we present a system of variational inequalities satisfied by the option price. Using the explicit finite difference method we could get the numerical option price.
Citation: Xiaoyu Xing, Hailiang Yang. American type geometric step options. Journal of Industrial & Management Optimization, 2013, 9 (3) : 549-560. doi: 10.3934/jimo.2013.9.549
References:
[1]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and expoential Lévy models,, SIAM Journal on Numerical Analysis, 43 (2005), 1596. doi: 10.1137/S0036142903436186.

[2]

D. Davydov and V. Linetsky, Structuring, pricing and hedging double-barrier step options,, Journal of Computational Finance, 5 (2001), 55.

[3]

R. Douady, Closed-form formulas for extoic options and their lift time distribution,, International Journal of Theoretical and Applied Finance, 2 (1999), 17. doi: 10.1142/S0219024999000030.

[4]

H. German and M. Yor, Pricing and hedging double barrier options: A probabilistic approach,, Mathematical Finance, 6 (1996), 365.

[5]

C. H. Hui, C. F. Lo and P. H. Yuen, Comment on "Pricing double-barrier options using Laplace Transforms",, Finance and Stochastics, 4 (2000), 105. doi: 10.1007/s007800050006.

[6]

M. Jeannin and M. Pistorius, A transform approach to calculate prices and greeks of barrier options driven by a class of Lévy processes,, Quantitative Finance, 10 (2010), 629. doi: 10.1080/14697680902896057.

[7]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", $2^{nd}$ edition, (1991). doi: 10.1007/978-1-4612-0949-2.

[8]

I. Karatzas and S. E. Shreve, "Methods of Mathematical Finance,", Springer-Verlag, (1998).

[9]

S. G. Kou and H. Wang, Option Pricing under a double exponential jump diffusion model,, Management Science, 50 (2004), 1178.

[10]

N. Kunitomo and M. Ikeda, Pricing optons with curved boundaries,, Mathematical Finance, 2 (1992), 275.

[11]

V. Linetsky, Step options,, Mathematical Finance, 9 (1999), 55. doi: 10.1111/1467-9965.00063.

[12]

F. Longstaff and E. Schwartz, Valuing American options by simulation: A simple beast-squares approach,, The Review of Financal Studies, 14 (2001), 113.

[13]

R. C. Merton, Theory of rational option pricing,, Bell Journal of Economics and Management Science, 4 (1973), 141. doi: 10.2307/3003143.

[14]

D. Rich, The mathematical foundations of barrier option pricing theory,, Advances in Futures and Options Research, 7 (1994), 267.

[15]

M. Rubinstein and E. Reiner, Breaking down the barriers,, RISK, (1991), 28.

[16]

M. Schroder, On the valuation of double-barrier options: Computational aspects,, Journal of Computaional Finance, 3 (2000), 1.

[17]

S. E. Shreve, "Stochastic Calculus for Fiance II: Continuous-Time Models,", Springer-Verlag, (2004).

[18]

J. Sidenius, Double barrier options: Valuation by path counting,, Computational Finance, 1 (1998), 63.

[19]

J. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American style options,, IEEE Transactions on Neural Networks, 12 (2001), 694. doi: 10.1109/72.935083.

show all references

References:
[1]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and expoential Lévy models,, SIAM Journal on Numerical Analysis, 43 (2005), 1596. doi: 10.1137/S0036142903436186.

[2]

D. Davydov and V. Linetsky, Structuring, pricing and hedging double-barrier step options,, Journal of Computational Finance, 5 (2001), 55.

[3]

R. Douady, Closed-form formulas for extoic options and their lift time distribution,, International Journal of Theoretical and Applied Finance, 2 (1999), 17. doi: 10.1142/S0219024999000030.

[4]

H. German and M. Yor, Pricing and hedging double barrier options: A probabilistic approach,, Mathematical Finance, 6 (1996), 365.

[5]

C. H. Hui, C. F. Lo and P. H. Yuen, Comment on "Pricing double-barrier options using Laplace Transforms",, Finance and Stochastics, 4 (2000), 105. doi: 10.1007/s007800050006.

[6]

M. Jeannin and M. Pistorius, A transform approach to calculate prices and greeks of barrier options driven by a class of Lévy processes,, Quantitative Finance, 10 (2010), 629. doi: 10.1080/14697680902896057.

[7]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", $2^{nd}$ edition, (1991). doi: 10.1007/978-1-4612-0949-2.

[8]

I. Karatzas and S. E. Shreve, "Methods of Mathematical Finance,", Springer-Verlag, (1998).

[9]

S. G. Kou and H. Wang, Option Pricing under a double exponential jump diffusion model,, Management Science, 50 (2004), 1178.

[10]

N. Kunitomo and M. Ikeda, Pricing optons with curved boundaries,, Mathematical Finance, 2 (1992), 275.

[11]

V. Linetsky, Step options,, Mathematical Finance, 9 (1999), 55. doi: 10.1111/1467-9965.00063.

[12]

F. Longstaff and E. Schwartz, Valuing American options by simulation: A simple beast-squares approach,, The Review of Financal Studies, 14 (2001), 113.

[13]

R. C. Merton, Theory of rational option pricing,, Bell Journal of Economics and Management Science, 4 (1973), 141. doi: 10.2307/3003143.

[14]

D. Rich, The mathematical foundations of barrier option pricing theory,, Advances in Futures and Options Research, 7 (1994), 267.

[15]

M. Rubinstein and E. Reiner, Breaking down the barriers,, RISK, (1991), 28.

[16]

M. Schroder, On the valuation of double-barrier options: Computational aspects,, Journal of Computaional Finance, 3 (2000), 1.

[17]

S. E. Shreve, "Stochastic Calculus for Fiance II: Continuous-Time Models,", Springer-Verlag, (2004).

[18]

J. Sidenius, Double barrier options: Valuation by path counting,, Computational Finance, 1 (1998), 63.

[19]

J. Tsitsiklis and B. Van Roy, Regression methods for pricing complex American style options,, IEEE Transactions on Neural Networks, 12 (2001), 694. doi: 10.1109/72.935083.

[1]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[2]

Nora Merabet. Global convergence of a memory gradient method with closed-form step size formula. Conference Publications, 2007, 2007 (Special) : 721-730. doi: 10.3934/proc.2007.2007.721

[3]

Timoteo Carletti. The lagrange inversion formula on non--Archimedean fields, non--analytical form of differential and finite difference equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 835-858. doi: 10.3934/dcds.2003.9.835

[4]

Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 183-198. doi: 10.3934/jimo.2011.7.183

[5]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[6]

Walter Allegretto, Yanping Lin, Shuqing Ma. On the box method for a non-local parabolic variational inequality. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 71-88. doi: 10.3934/dcdsb.2001.1.71

[7]

Shuang Chen, Li-Ping Pang, Dan Li. An inexact semismooth Newton method for variational inequality with symmetric cone constraints. Journal of Industrial & Management Optimization, 2015, 11 (3) : 733-746. doi: 10.3934/jimo.2015.11.733

[8]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018012

[9]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

[10]

Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 637-663. doi: 10.3934/jimo.2014.10.637

[11]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial & Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[12]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems & Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

[13]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[14]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[15]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[16]

Claire david@lmm.jussieu.fr David, Pierre Sagaut. Theoretical optimization of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 286-293. doi: 10.3934/proc.2007.2007.286

[17]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[18]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[19]

Ximin Huang, Na Song, Wai-Ki Ching, Tak-Kuen Siu, Ka-Fai Cedric Yiu. A real option approach to optimal inventory management of retail products. Journal of Industrial & Management Optimization, 2012, 8 (2) : 379-389. doi: 10.3934/jimo.2012.8.379

[20]

Noureddine Jilani Ben Naouara, Faouzi Trabelsi. Generalization on optimal multiple stopping with application to swing options with random exercise rights number. Mathematical Control & Related Fields, 2015, 5 (4) : 807-826. doi: 10.3934/mcrf.2015.5.807

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]