-
Previous Article
Fabric defect detection using multi-level tuned-matched Gabor filters
- JIMO Home
- This Issue
-
Next Article
Analysis of airline seat control with region factor
Robust portfolio selection with a combined WCVaR and factor model
1. | Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan |
References:
[1] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.
doi: 10.1111/1467-9965.00068. |
[2] |
T. S. Beder, VAR: Seductive but dangerous,, Financial Analysts Journal, 51 (1995), 12.
doi: 10.2469/faj.v51.n5.1932. |
[3] |
A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs,, Operations Research Letter, 25 (1999), 1.
doi: 10.1016/S0167-6377(99)00016-4. |
[4] |
L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach,, Operations Research, 51 (2003), 543.
doi: 10.1287/opre.51.4.543.16101. |
[5] |
F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance,, Annals of Operations Research, 176 (2010), 191.
doi: 10.1007/s10479-009-0515-6. |
[6] |
E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969),, Contributions to Economic Analysis, (1971), 309.
|
[7] |
E. F. Fama, Efficient capital markets: II,, Journal of Finance, 46 (1991), 1575.
doi: 10.2307/2328565. |
[8] |
E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds,, Journal of Financial Economics, 33 (1993), 3.
doi: 10.1016/0304-405X(93)90023-5. |
[9] |
D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1.
doi: 10.1287/moor.28.1.1.14260. |
[10] |
A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods,, Algo Research Quarterly, 1 (1998), 17. |
[11] |
J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, The Review of Economics and Statistics, 47 (1956), 13.
doi: 10.2307/1924119. |
[12] |
H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.
doi: 10.2307/2975974. |
[13] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21. |
[14] |
R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution,, Journal of Banking and Finance, 26 (2002), 1443.
doi: 10.1016/S0378-4266(02)00271-6. |
[15] |
S. A. Ross, The arbitrage theory of capital asset pricing,, Journal of Economic Theory, 13 (1976), 341.
doi: 10.1016/0022-0531(76)90046-6. |
[16] |
W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.
doi: 10.2307/2977928. |
[17] |
S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management,, Operations Research, 57 (2009), 1155.
doi: 10.1287/opre.1080.0684. |
show all references
References:
[1] |
P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk,, Mathematical Finance, 9 (1999), 203.
doi: 10.1111/1467-9965.00068. |
[2] |
T. S. Beder, VAR: Seductive but dangerous,, Financial Analysts Journal, 51 (1995), 12.
doi: 10.2469/faj.v51.n5.1932. |
[3] |
A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs,, Operations Research Letter, 25 (1999), 1.
doi: 10.1016/S0167-6377(99)00016-4. |
[4] |
L. El Ghaoui, M. Oks and F. Oustry, Worst-case value-at-risk and robust portfolio optimization: A conic programming approach,, Operations Research, 51 (2003), 543.
doi: 10.1287/opre.51.4.543.16101. |
[5] |
F. J. Fabozzi, D. Huang and G. Zhou, Robust portfolios: Contributions from operations research and finance,, Annals of Operations Research, 176 (2010), 191.
doi: 10.1007/s10479-009-0515-6. |
[6] |
E. F. Fama, Efficient capital markets: A review of theory and empirical work, in "Frontiers of Quantitative Economics" (Invited Papers, Econometric Soc. Winter Meetings, New York, 1969),, Contributions to Economic Analysis, (1971), 309.
|
[7] |
E. F. Fama, Efficient capital markets: II,, Journal of Finance, 46 (1991), 1575.
doi: 10.2307/2328565. |
[8] |
E. F. Fama and K. R. French, Common risk factors in the returns on stocks and bonds,, Journal of Financial Economics, 33 (1993), 3.
doi: 10.1016/0304-405X(93)90023-5. |
[9] |
D. Goldfarb and G. Iyengar, Robust portfolio selection problems,, Mathematics of Operations Research, 28 (2003), 1.
doi: 10.1287/moor.28.1.1.14260. |
[10] |
A. Kreinin, L. Merkoulovitch, D. Rosen and Z. Michael, Measuring portfolio risk using quasi Monte Carlo methods,, Algo Research Quarterly, 1 (1998), 17. |
[11] |
J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets,, The Review of Economics and Statistics, 47 (1956), 13.
doi: 10.2307/1924119. |
[12] |
H. M. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.
doi: 10.2307/2975974. |
[13] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk,, Journal of Risk, 2 (2000), 21. |
[14] |
R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distribution,, Journal of Banking and Finance, 26 (2002), 1443.
doi: 10.1016/S0378-4266(02)00271-6. |
[15] |
S. A. Ross, The arbitrage theory of capital asset pricing,, Journal of Economic Theory, 13 (1976), 341.
doi: 10.1016/0022-0531(76)90046-6. |
[16] |
W. F. Sharp, Capital asset prices: A theory of market equilibrium under conditions of risk,, Journal of Finance, 19 (1964), 425.
doi: 10.2307/2977928. |
[17] |
S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management,, Operations Research, 57 (2009), 1155.
doi: 10.1287/opre.1080.0684. |
[1] |
Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191 |
[2] |
Zhenbo Wang. Worst-case performance of the successive approximation algorithm for four identical knapsacks. Journal of Industrial & Management Optimization, 2012, 8 (3) : 651-656. doi: 10.3934/jimo.2012.8.651 |
[3] |
Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531 |
[4] |
W.C. Ip, H. Wong, Jiazhu Pan, Keke Yuan. Estimating value-at-risk for chinese stock market by switching regime ARCH model. Journal of Industrial & Management Optimization, 2006, 2 (2) : 145-163. doi: 10.3934/jimo.2006.2.145 |
[5] |
Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411 |
[6] |
Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109 |
[7] |
Ye Tian, Shucherng Fang, Zhibin Deng, Qingwei Jin. Cardinality constrained portfolio selection problem: A completely positive programming approach. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1041-1056. doi: 10.3934/jimo.2016.12.1041 |
[8] |
K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81 |
[9] |
Qiyu Wang, Hailin Sun. Sparse markowitz portfolio selection by using stochastic linear complementarity approach. Journal of Industrial & Management Optimization, 2018, 14 (2) : 541-559. doi: 10.3934/jimo.2017059 |
[10] |
Le Thi Hoai An, Tran Duc Quynh, Pham Dinh Tao. A DC programming approach for a class of bilevel programming problems and its application in Portfolio Selection. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 167-185. doi: 10.3934/naco.2012.2.167 |
[11] |
Yanqin Bai, Yudan Wei, Qian Li. An optimal trade-off model for portfolio selection with sensitivity of parameters. Journal of Industrial & Management Optimization, 2017, 13 (2) : 947-965. doi: 10.3934/jimo.2016055 |
[12] |
Lan Yi, Zhongfei Li, Duan Li. Multi-period portfolio selection for asset-liability management with uncertain investment horizon. Journal of Industrial & Management Optimization, 2008, 4 (3) : 535-552. doi: 10.3934/jimo.2008.4.535 |
[13] |
Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643-656. doi: 10.3934/jimo.2013.9.643 |
[14] |
Christina Burt, Louis Caccetta, Leon Fouché, Palitha Welgama. An MILP approach to multi-location, multi-period equipment selection for surface mining with case studies. Journal of Industrial & Management Optimization, 2016, 12 (2) : 403-430. doi: 10.3934/jimo.2016.12.403 |
[15] |
Shaoyong Lai, Qichang Xie. A selection problem for a constrained linear regression model. Journal of Industrial & Management Optimization, 2008, 4 (4) : 757-766. doi: 10.3934/jimo.2008.4.757 |
[16] |
Wenxun Xing, Feng Chen. A-shaped bin packing: Worst case analysis via simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 323-335. doi: 10.3934/jimo.2005.1.323 |
[17] |
Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045 |
[18] |
Behrouz Kheirfam, Kamal mirnia. Multi-parametric sensitivity analysis in piecewise linear fractional programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 343-351. doi: 10.3934/jimo.2008.4.343 |
[19] |
Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475 |
[20] |
Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33 |
2016 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]