2011, 7(2): 283-289. doi: 10.3934/jimo.2011.7.283

New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays

1. 

Department of Control Science & Engineering, Huazhong University of Science & Technology, and Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan, Hubei 430074, China

2. 

Texas A&M University at Qatar, Doha, P.O. Box 5825, Qatar, United States

Received  December 2009 Revised  September 2010 Published  April 2011

In this paper, by using some analytic techniques, several sufficient conditions are given to ensure the passivity of continuous-time recurrent neural networks with delays. The passivity conditions are presented in terms of some negative semi-definite matrices. They are easily verifiable and easier to check computing with some conditions in terms of complicated linear matrix inequality.
Citation: Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283
References:
[1]

S. Commuri and F. L. Lewis, CMAC neural networks for control of nonlinear dynamical systems: structure, stability and passivity,, Automatica, 33 (1996), 635. doi: 10.1016/S0005-1098(96)00180-X.

[2]

A. Kugi, C. Ott, A. Albu-Schaffer and G. Hirzinger, On the passivity-based impedance control of flexible joint robots,, IEEE Transactions on Robotics, 24 (2008), 416. doi: 10.1109/TRO.2008.915438.

[3]

J. Li, H. R. Feng and M.C. Wang, A replenishment policy with defective products, backlog and delay of payments,, Journal of Industrial and Management Optimization, 5 (2009), 867. doi: 10.3934/jimo.2009.5.867.

[4]

C. G. Li and X. F. Liao, Passivity analysis of neural networks with time delay,, IEEE Transactions on Circuits and Systems-II: Express Briefs, 52 (2005), 471.

[5]

L. Lin, D. He and Z. Y. Tan, Bounds on delay start lpt algorithm for scheduling on two identical machines in the l(p) norm,, Journal of Industrial and Management Optimization, 4 (2008), 817.

[6]

X. X. Liao and J. Wang, Global dissipativity of continuous-time recurrent neural networks with time delay,, Physical Review E, 68 (2003), 1. doi: 10.1103/PhysRevE.68.016118.

[7]

X. Y. Lou and B. T. Cui, Passivity analysis of integro-differential neural networks with time-varying delays,, Neurocomputing, 70 (2007), 1071.

[8]

R. Lozano, B. Brogliato, O. Egeland and B. Maschke, "Systems Analysis and Control: Theory and Applications, Dissipative,", Springer-Verlag, (2000).

[9]

M. S. Mahmoud and A. Ismail, Passivity and passification of time-delay systems,, Journal of Mathematical Analysis and Applications, 292 (2004), 247. doi: 10.1016/j.jmaa.2003.11.055.

[10]

J. H. Park, Further results on passivity analysis of delayed cellular neural networks,, Chaos, 34 (2007), 1546. doi: 10.1016/j.chaos.2005.04.124.

[11]

O. J. Rojas, J. Bao and P. L. Lee, On dissipativity, passivity and dynamic operability of nonlinear processes,, Journal of Process Control, 18 (2008), 515. doi: 10.1016/j.jprocont.2007.07.007.

[12]

J. J. Rubio and W. Yu, Stability analysis of nonlinear system identification via delayed neural networks,, IEEE Transactions on Circuits and Systems-II: Express Briefs, 54 (2007), 161. doi: 10.1109/TCSII.2006.886464.

[13]

H. Santoso, J. Bao and P. L. Lee, Dynamic operability analysis for stable and unstable linear processes,, Industrial & Engineering Chemistry Research, 47 (2008), 4765. doi: 10.1021/ie070599c.

[14]

S. Wang, Q. Shao and X. Zhou, Knot-optimizing spline networks (KOSNETS) for nonparametric regression,, Journal of Industrial and Management Optimization, 4 (2008), 33.

[15]

L. X. Xu and W. Q. Liu, A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service,, Journal of Industrial and Management Optimization, 1 (2005), 389.

[16]

Y. Yatsenko and N. Hritonenko, Optimization of the lifetime of capital equipment using integral models,, Journal of Industrial and Management Optimization, 1 (2005), 415.

[17]

W. Yu and X. Li, Some stability properties of dynamic neural networks,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48 (2001), 256. doi: 10.1109/81.904893.

[18]

W. Yu and X. Li, New results on system identification with dynamic neural networks,, IEEE Transactions on Neural Networks, 12 (2001), 412. doi: 10.1109/72.914535.

[19]

W. Yu, Passivity analysis for dynamic multilayer neuro identifier,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 50 (2003), 173.

show all references

References:
[1]

S. Commuri and F. L. Lewis, CMAC neural networks for control of nonlinear dynamical systems: structure, stability and passivity,, Automatica, 33 (1996), 635. doi: 10.1016/S0005-1098(96)00180-X.

[2]

A. Kugi, C. Ott, A. Albu-Schaffer and G. Hirzinger, On the passivity-based impedance control of flexible joint robots,, IEEE Transactions on Robotics, 24 (2008), 416. doi: 10.1109/TRO.2008.915438.

[3]

J. Li, H. R. Feng and M.C. Wang, A replenishment policy with defective products, backlog and delay of payments,, Journal of Industrial and Management Optimization, 5 (2009), 867. doi: 10.3934/jimo.2009.5.867.

[4]

C. G. Li and X. F. Liao, Passivity analysis of neural networks with time delay,, IEEE Transactions on Circuits and Systems-II: Express Briefs, 52 (2005), 471.

[5]

L. Lin, D. He and Z. Y. Tan, Bounds on delay start lpt algorithm for scheduling on two identical machines in the l(p) norm,, Journal of Industrial and Management Optimization, 4 (2008), 817.

[6]

X. X. Liao and J. Wang, Global dissipativity of continuous-time recurrent neural networks with time delay,, Physical Review E, 68 (2003), 1. doi: 10.1103/PhysRevE.68.016118.

[7]

X. Y. Lou and B. T. Cui, Passivity analysis of integro-differential neural networks with time-varying delays,, Neurocomputing, 70 (2007), 1071.

[8]

R. Lozano, B. Brogliato, O. Egeland and B. Maschke, "Systems Analysis and Control: Theory and Applications, Dissipative,", Springer-Verlag, (2000).

[9]

M. S. Mahmoud and A. Ismail, Passivity and passification of time-delay systems,, Journal of Mathematical Analysis and Applications, 292 (2004), 247. doi: 10.1016/j.jmaa.2003.11.055.

[10]

J. H. Park, Further results on passivity analysis of delayed cellular neural networks,, Chaos, 34 (2007), 1546. doi: 10.1016/j.chaos.2005.04.124.

[11]

O. J. Rojas, J. Bao and P. L. Lee, On dissipativity, passivity and dynamic operability of nonlinear processes,, Journal of Process Control, 18 (2008), 515. doi: 10.1016/j.jprocont.2007.07.007.

[12]

J. J. Rubio and W. Yu, Stability analysis of nonlinear system identification via delayed neural networks,, IEEE Transactions on Circuits and Systems-II: Express Briefs, 54 (2007), 161. doi: 10.1109/TCSII.2006.886464.

[13]

H. Santoso, J. Bao and P. L. Lee, Dynamic operability analysis for stable and unstable linear processes,, Industrial & Engineering Chemistry Research, 47 (2008), 4765. doi: 10.1021/ie070599c.

[14]

S. Wang, Q. Shao and X. Zhou, Knot-optimizing spline networks (KOSNETS) for nonparametric regression,, Journal of Industrial and Management Optimization, 4 (2008), 33.

[15]

L. X. Xu and W. Q. Liu, A new recurrent neural network adaptive approach for host-gate way rate control protocol within intranets using ATM ABR service,, Journal of Industrial and Management Optimization, 1 (2005), 389.

[16]

Y. Yatsenko and N. Hritonenko, Optimization of the lifetime of capital equipment using integral models,, Journal of Industrial and Management Optimization, 1 (2005), 415.

[17]

W. Yu and X. Li, Some stability properties of dynamic neural networks,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48 (2001), 256. doi: 10.1109/81.904893.

[18]

W. Yu and X. Li, New results on system identification with dynamic neural networks,, IEEE Transactions on Neural Networks, 12 (2001), 412. doi: 10.1109/72.914535.

[19]

W. Yu, Passivity analysis for dynamic multilayer neuro identifier,, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 50 (2003), 173.

[1]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[2]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[3]

Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317

[4]

Wei Huang, Ka-Fai Cedric Yiu, Henry Y. K. Lau. Semi-definite programming based approaches for real-time tractor localization in port container terminals. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 665-680. doi: 10.3934/naco.2013.3.665

[5]

Yuhong Dai, Nobuo Yamashita. Convergence analysis of sparse quasi-Newton updates with positive definite matrix completion for two-dimensional functions. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 61-69. doi: 10.3934/naco.2011.1.61

[6]

Jui-Pin Tseng. Global asymptotic dynamics of a class of nonlinearly coupled neural networks with delays. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4693-4729. doi: 10.3934/dcds.2013.33.4693

[7]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[8]

Cheng-Hsiung Hsu, Suh-Yuh Yang. Traveling wave solutions in cellular neural networks with multiple time delays. Conference Publications, 2005, 2005 (Special) : 410-419. doi: 10.3934/proc.2005.2005.410

[9]

Fernando Hernando, Diego Ruano. New linear codes from matrix-product codes with polynomial units. Advances in Mathematics of Communications, 2010, 4 (3) : 363-367. doi: 10.3934/amc.2010.4.363

[10]

Jiang-Xia Nan, Deng-Feng Li. Linear programming technique for solving interval-valued constraint matrix games. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1059-1070. doi: 10.3934/jimo.2014.10.1059

[11]

Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1

[12]

Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009

[13]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[14]

Behrouz Kheirfam. Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming. Journal of Industrial & Management Optimization, 2010, 6 (2) : 347-361. doi: 10.3934/jimo.2010.6.347

[15]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

[16]

Murat Arcak, Eduardo D. Sontag. A passivity-based stability criterion for a class of biochemical reaction networks. Mathematical Biosciences & Engineering, 2008, 5 (1) : 1-19. doi: 10.3934/mbe.2008.5.1

[17]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[18]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems . Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[19]

A. Cibotarica, Jiu Ding, J. Kolibal, Noah H. Rhee. Solutions of the Yang-Baxter matrix equation for an idempotent. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 347-352. doi: 10.3934/naco.2013.3.347

[20]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by $(k,k)$-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]