2011, 7(1): 175-181. doi: 10.3934/jimo.2011.7.175

2-D analysis based iterative learning control for linear discrete-time systems with time delay

1. 

Department of Computer, Chongqing University, Chongqing 400044, China, China

2. 

Texas A&M University at Qatar, Doha, P.O.Box 5825

Received  December 2009 Revised  October 2010 Published  January 2011

This paper investigates an iterative learning controller for linear discrete-time systems with state delay based on two-dimensional (2-D) system theory. It shall be shown that a 2-D linear discrete Roessor's model can be applied to describe the ILC process of linear discrete time-delay systems. Much less restrictive conditions for the convergence of the proposed learning rules are derived. A learning algorithm is presented which provides much more effective learning of control input, which enables us to obtain a control input to drive the system output to the desired trajectory quickly. Numerical examples are included to illustrate the performance of the proposed control procedures.
Citation: Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175
References:
[1]

S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123. doi: 10.1002/rob.4620010203.

[2]

Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345. doi: 10.1016/S0005-1098(97)00196-9.

[3]

J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217. doi: 10.1049/ip-cta:20000138.

[4]

T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683.

[5]

X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems,, IEE Pro.-Control Theory Appl., 152 (2005).

[6]

Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003).

[7]

Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system,, Aoutmatica, 34 (1998), 1459. doi: 10.1016/S0005-1098(98)00091-0.

[8]

K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems,, IEE Proc.-Circuits Devices Syst., 148 (2001).

[9]

Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833. doi: 10.1080/00207179008953571.

[10]

Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory,, J. Intell. Robot. Syst., (1990), 17. doi: 10.1007/BF00368970.

[11]

Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451.

[12]

D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139.

[13]

T. Kaczorek, "Two-Dimensional Linear Systems,", New York: SpringerVerlag, (1985).

[14]

J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121. doi: 10.1109/9.186321.

[15]

X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005).

[16]

X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory,, IEE Proc.-Control Theory Appl., 152 (2005).

[17]

K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: Springer-Verlag, (1993).

[18]

K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE Proceedings-Control Theory and Applications, 145 (1998), 507. doi: 10.1049/ip-cta:19982409.

[19]

W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0.

[20]

T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991). doi: 10.1016/0005-1098(91)90066-B.

[21]

J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259. doi: 10.1007/s11768-005-0046-x.

[22]

B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600. doi: 10.1016/S1004-4132(06)60103-5.

show all references

References:
[1]

S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123. doi: 10.1002/rob.4620010203.

[2]

Y. Chen and Z. Gong, Analysis of a high-order iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345. doi: 10.1016/S0005-1098(97)00196-9.

[3]

J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217. doi: 10.1049/ip-cta:20000138.

[4]

T. W. S. Chow and Yong F, An iterative learning control method for continuous-time systems based on 2-D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683.

[5]

X. Fang, P. Chen and J. Shao, Optimal higher-order iterative learning control of discrete-time linear systems,, IEE Pro.-Control Theory Appl., 152 (2005).

[6]

Y. Fang and T. W. S. Chow, 2-D Analysis for iterative learning control for discrete-time systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003).

[7]

Y. Fang and T. W. S. Chow, Iterative learning control of linear discrete-time multivariable system,, Aoutmatica, 34 (1998), 1459. doi: 10.1016/S0005-1098(98)00091-0.

[8]

K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2-D dicrete linear systems,, IEE Proc.-Circuits Devices Syst., 148 (2001).

[9]

Z. Geng, R. Carroll and J. Xies, Two-dimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833. doi: 10.1080/00207179008953571.

[10]

Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2-D system theory,, J. Intell. Robot. Syst., (1990), 17. doi: 10.1007/BF00368970.

[11]

Feng-Hsiag. Hsiao and K. yeh, Robust D-stability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451.

[12]

D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discrete-time dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139.

[13]

T. Kaczorek, "Two-Dimensional Linear Systems,", New York: SpringerVerlag, (1985).

[14]

J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2-D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121. doi: 10.1109/9.186321.

[15]

X. D. Li and T. W. S Chow, 2-D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005).

[16]

X. D. Li and T. W. S Chow, Iterative learning control for linear time-variant discrete systems based on 2-D system theory,, IEE Proc.-Control Theory Appl., 152 (2005).

[17]

K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: Springer-Verlag, (1993).

[18]

K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE Proceedings-Control Theory and Applications, 145 (1998), 507. doi: 10.1049/ip-cta:19982409.

[19]

W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0.

[20]

T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991). doi: 10.1016/0005-1098(91)90066-B.

[21]

J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259. doi: 10.1007/s11768-005-0046-x.

[22]

B. Zhang and G. Tang, PD-type iterative learning control for nonlinear time-delay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600. doi: 10.1016/S1004-4132(06)60103-5.

[1]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[2]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[3]

H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119

[4]

Roberto Triggiani. Stability enhancement of a 2-D linear Navier-Stokes channel flow by a 2-D, wall-normal boundary controller. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 279-314. doi: 10.3934/dcdsb.2007.8.279

[5]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[6]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040

[7]

Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2-D quasilinear wave equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 719-744. doi: 10.3934/cpaa.2017035

[8]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

[9]

Alex Bombrun, Jean-Baptiste Pomet. Asymptotic behavior of time optimal orbital transfer for low thrust 2-body control system. Conference Publications, 2007, 2007 (Special) : 122-129. doi: 10.3934/proc.2007.2007.122

[10]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[11]

Tian Ma, Shouhong Wang. Global structure of 2-D incompressible flows. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 431-445. doi: 10.3934/dcds.2001.7.431

[12]

Jean-françois Coulombel, Paolo Secchi. Uniqueness of 2-D compressible vortex sheets. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1439-1450. doi: 10.3934/cpaa.2009.8.1439

[13]

Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327

[14]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 299-313. doi: 10.3934/dcds.2009.23.299

[15]

Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63

[16]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[17]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[18]

Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4265-4285. doi: 10.3934/dcds.2012.32.4265

[19]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[20]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]