
Previous Article
Nonlinear augmented Lagrangian for nonconvex multiobjective optimization
 JIMO Home
 This Issue

Next Article
A differential equation method for solving box constrained variational inequality problems
2D analysis based iterative learning control for linear discretetime systems with time delay
1.  Department of Computer, Chongqing University, Chongqing 400044, China, China 
2.  Texas A&M University at Qatar, Doha, P.O.Box 5825 
References:
[1] 
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123. doi: 10.1002/rob.4620010203. 
[2] 
Y. Chen and Z. Gong, Analysis of a highorder iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345. doi: 10.1016/S00051098(97)001969. 
[3] 
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217. doi: 10.1049/ipcta:20000138. 
[4] 
T. W. S. Chow and Yong F, An iterative learning control method for continuoustime systems based on 2D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683. 
[5] 
X. Fang, P. Chen and J. Shao, Optimal higherorder iterative learning control of discretetime linear systems,, IEE Pro.Control Theory Appl., 152 (2005). 
[6] 
Y. Fang and T. W. S. Chow, 2D Analysis for iterative learning control for discretetime systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003). 
[7] 
Y. Fang and T. W. S. Chow, Iterative learning control of linear discretetime multivariable system,, Aoutmatica, 34 (1998), 1459. doi: 10.1016/S00051098(98)000910. 
[8] 
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2D dicrete linear systems,, IEE Proc.Circuits Devices Syst., 148 (2001). 
[9] 
Z. Geng, R. Carroll and J. Xies, Twodimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833. doi: 10.1080/00207179008953571. 
[10] 
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2D system theory,, J. Intell. Robot. Syst., (1990), 17. doi: 10.1007/BF00368970. 
[11] 
FengHsiag. Hsiao and K. yeh, Robust Dstability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451. 
[12] 
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discretetime dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139. 
[13] 
T. Kaczorek, "TwoDimensional Linear Systems,", New York: SpringerVerlag, (1985). 
[14] 
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121. doi: 10.1109/9.186321. 
[15] 
X. D. Li and T. W. S Chow, 2D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005). 
[16] 
X. D. Li and T. W. S Chow, Iterative learning control for linear timevariant discrete systems based on 2D system theory,, IEE Proc.Control Theory Appl., 152 (2005). 
[17] 
K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: SpringerVerlag, (1993). 
[18] 
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE ProceedingsControl Theory and Applications, 145 (1998), 507. doi: 10.1049/ipcta:19982409. 
[19] 
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0. 
[20] 
T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991). doi: 10.1016/00051098(91)90066B. 
[21] 
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259. doi: 10.1007/s117680050046x. 
[22] 
B. Zhang and G. Tang, PDtype iterative learning control for nonlinear timedelay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600. doi: 10.1016/S10044132(06)601035. 
show all references
References:
[1] 
S. Arimoto, S. Kawamura and F. Miyazaki, Bettering operation of robots by learning,, J. Robot Syst., 1 (1984), 123. doi: 10.1002/rob.4620010203. 
[2] 
Y. Chen and Z. Gong, Analysis of a highorder iterative learning control algorithm for uncertain nonlinear systems with state delays,, Automatica, 34 (1998), 345. doi: 10.1016/S00051098(97)001969. 
[3] 
J. Y. Choi and J. S. Lee, Adaptive iterative learning control of uncertain robotic systems,, IEE, 147 (2000), 217. doi: 10.1049/ipcta:20000138. 
[4] 
T. W. S. Chow and Yong F, An iterative learning control method for continuoustime systems based on 2D system theory,, IEEE Trans. Circuits Syst., 45 (1998), 683. 
[5] 
X. Fang, P. Chen and J. Shao, Optimal higherorder iterative learning control of discretetime linear systems,, IEE Pro.Control Theory Appl., 152 (2005). 
[6] 
Y. Fang and T. W. S. Chow, 2D Analysis for iterative learning control for discretetime systems with variable initial conditions,, IEEE Tran. Automat. Contr, 50 (2003). 
[7] 
Y. Fang and T. W. S. Chow, Iterative learning control of linear discretetime multivariable system,, Aoutmatica, 34 (1998), 1459. doi: 10.1016/S00051098(98)000910. 
[8] 
K. Galkowski and E. Rogers, Stablility and dynamic boundary condition decoupling analysis for a class of 2D dicrete linear systems,, IEE Proc.Circuits Devices Syst., 148 (2001). 
[9] 
Z. Geng, R. Carroll and J. Xies, Twodimensional model and algorithm analysis for a class of iterative learning control system,, Int. J. Contr., 52 (1990), 833. doi: 10.1080/00207179008953571. 
[10] 
Z. Geng and M. Jamshidi, Learning control system analysis and design based on 2D system theory,, J. Intell. Robot. Syst., (1990), 17. doi: 10.1007/BF00368970. 
[11] 
FengHsiag. Hsiao and K. yeh, Robust Dstability analysis for discrete uncertain systems with multiple time delays,, IEEE Tencon, (1993), 451. 
[12] 
D. H. Hwang, Z. Bien and S. R. Oh, Iterative learning control method for discretetime dynamic systems,, Proc. Inst. Elect. Eng. D, 138 (1991), 139. 
[13] 
T. Kaczorek, "TwoDimensional Linear Systems,", New York: SpringerVerlag, (1985). 
[14] 
J. E. Kurek and M. B. Zaremba, Iterative learning control synthesis based on 2D system theory,, IEEE Trans. Automat. Contr., 38 (1993), 121. doi: 10.1109/9.186321. 
[15] 
X. D. Li and T. W. S Chow, 2D System theory based iterative learning control for linear continuous system with time delay,, IEEE Tran. Automat. Contr, 52 (2005). 
[16] 
X. D. Li and T. W. S Chow, Iterative learning control for linear timevariant discrete systems based on 2D system theory,, IEE Proc.Control Theory Appl., 152 (2005). 
[17] 
K. L. Moore, "Iterative Learning Control for Deterministic Systems,", New York: SpringerVerlag, (1993). 
[18] 
K. H. Park, Z. Bien and D. H. Hwang, Design of an iterative learning controller for a class of linear dynamic systems with time delay,, IEE ProceedingsControl Theory and Applications, 145 (1998), 507. doi: 10.1049/ipcta:19982409. 
[19] 
W. Paszke and K. Galkowsiki, Stability and stabilisation of 2D discrete linear systems with multiple delays,, IEEE, (2003), 0. 
[20] 
T. Sugie and T. Ono, An iterative learning control law for dynamic systems,, Automatica, 27 (1991). doi: 10.1016/00051098(91)90066B. 
[21] 
J. M. Xu and M. X. Sun, LMI_based robust iterative learning controller design for discrete linear uncertain systems,, Journal of Control Theory and Application, 3 (2005), 259. doi: 10.1007/s117680050046x. 
[22] 
B. Zhang and G. Tang, PDtype iterative learning control for nonlinear timedelay system with external disturbance,, Journal of System Engineering and Electronic, 17 (2006), 600. doi: 10.1016/S10044132(06)601035. 
[1] 
Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2D EricksenLeslie system. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 919941. doi: 10.3934/dcdsb.2016.21.919 
[2] 
Lingbing He. On the global smooth solution to 2D fluid/particle system. Discrete & Continuous Dynamical Systems  A, 2010, 27 (1) : 237263. doi: 10.3934/dcds.2010.27.237 
[3] 
H. T. Banks, R.C. Smith. Feedback control of noise in a 2D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems  A, 1995, 1 (1) : 119149. doi: 10.3934/dcds.1995.1.119 
[4] 
Roberto Triggiani. Stability enhancement of a 2D linear NavierStokes channel flow by a 2D, wallnormal boundary controller. Discrete & Continuous Dynamical Systems  B, 2007, 8 (2) : 279314. doi: 10.3934/dcdsb.2007.8.279 
[5] 
Melody Dodd, Jennifer L. Mueller. A realtime Dbar algorithm for 2D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 10131031. doi: 10.3934/ipi.2014.8.1013 
[6] 
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of twodimensional piecewise linear maps: Abundance of 2D strange attractors. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 941966. doi: 10.3934/dcds.2018040 
[7] 
Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2D channel using normal boundary control. Evolution Equations & Control Theory, 2018, 7 (3) : 447463. doi: 10.3934/eect.2018022 
[8] 
Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2D quasilinear wave equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 719744. doi: 10.3934/cpaa.2017035 
[9] 
Chao Deng, Tong Li. Global existence and large time behavior of a 2D KellerSegel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems  B, 2019, 24 (1) : 183195. doi: 10.3934/dcdsb.2018093 
[10] 
Tian Ma, Shouhong Wang. Global structure of 2D incompressible flows. Discrete & Continuous Dynamical Systems  A, 2001, 7 (2) : 431445. doi: 10.3934/dcds.2001.7.431 
[11] 
Jeanfrançois Coulombel, Paolo Secchi. Uniqueness of 2D compressible vortex sheets. Communications on Pure & Applied Analysis, 2009, 8 (4) : 14391450. doi: 10.3934/cpaa.2009.8.1439 
[12] 
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2D turbulence. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 13271351. doi: 10.3934/dcds.2010.27.1327 
[13] 
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2D Burgers equation. Discrete & Continuous Dynamical Systems  A, 2009, 23 (1&2) : 299313. doi: 10.3934/dcds.2009.23.299 
[14] 
Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on modelreality differences for discretetime nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109125. doi: 10.3934/naco.2013.3.109 
[15] 
Alex Bombrun, JeanBaptiste Pomet. Asymptotic behavior of time optimal orbital transfer for low thrust 2body control system. Conference Publications, 2007, 2007 (Special) : 122129. doi: 10.3934/proc.2007.2007.122 
[16] 
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195215. doi: 10.3934/mcrf.2012.2.195 
[17] 
Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative timereversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 6381. doi: 10.3934/ipi.2008.2.63 
[18] 
Jérome Lohéac, JeanFrançois Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185208. doi: 10.3934/mcrf.2013.3.185 
[19] 
Igor Kukavica. Interior gradient bounds for the 2D NavierStokes system. Discrete & Continuous Dynamical Systems  A, 2001, 7 (4) : 873882. doi: 10.3934/dcds.2001.7.873 
[20] 
Chunhua Li. Decay of solutions for a system of nonlinear Schrödinger equations in 2D. Discrete & Continuous Dynamical Systems  A, 2012, 32 (12) : 42654285. doi: 10.3934/dcds.2012.32.4265 
2017 Impact Factor: 0.994
Tools
Metrics
Other articles
by authors
[Back to Top]