# American Institute of Mathematical Sciences

October  2006, 2(4): 351-371. doi: 10.3934/jimo.2006.2.351

## A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers

 1 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China 2 School of Mathematics and Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received  November 2005 Revised  April 2006 Published  October 2006

In this paper we propose a new arithmetic and a novel order relation for interval numbers. We shall show that this new interval arithmetic satisfies some operational properties and has the merit that it reduces uncertainties coming from classic ones. We shall also show that the order relation introduced in this paper is a linear or partial order (satisfying reflexivity, anti-symmetry and transitivity), and has the property of comparability. This is in contrast to the existing interval orders which do not have the property of comparability. Numerical examples on profit intervals and uncertain interval data will be presented to demonstrate the usefulness and applicability of these new arithmetic and order relations.
Citation: Bao Qing Hu, Song Wang. A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. Journal of Industrial & Management Optimization, 2006, 2 (4) : 351-371. doi: 10.3934/jimo.2006.2.351
 [1] Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial & Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047 [2] Harish Garg, Kamal Kumar. Group decision making approach based on possibility degree measure under linguistic interval-valued intuitionistic fuzzy set environment. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2018162 [3] Alexandra Skripchenko. Symmetric interval identification systems of order three. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 643-656. doi: 10.3934/dcds.2012.32.643 [4] Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial & Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105 [5] Hsien-Chung Wu. Solving the interval-valued optimization problems based on the concept of null set. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1157-1178. doi: 10.3934/jimo.2018004 [6] Masoumeh Gharaei, Ale Jan Homburg. Random interval diffeomorphisms. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 241-272. doi: 10.3934/dcdss.2017012 [7] Yuri V. Rogovchenko, Fatoş Tuncay. Interval oscillation of a second order nonlinear differential equation with a damping term. Conference Publications, 2007, 2007 (Special) : 883-891. doi: 10.3934/proc.2007.2007.883 [8] Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 [9] Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 [10] Daniel Bernazzani. Most interval exchanges have no roots. Journal of Modern Dynamics, 2017, 11: 249-262. doi: 10.3934/jmd.2017011 [11] Ivan Dynnikov, Alexandra Skripchenko. Minimality of interval exchange transformations with restrictions. Journal of Modern Dynamics, 2017, 11: 219-248. doi: 10.3934/jmd.2017010 [12] Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271 [13] Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 [14] Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079 [15] Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 [16] Christopher F. Novak. Discontinuity-growth of interval-exchange maps. Journal of Modern Dynamics, 2009, 3 (3) : 379-405. doi: 10.3934/jmd.2009.3.379 [17] Yuanhong Chen, Chao Ma, Jun Wu. Moving recurrent properties for the doubling map on the unit interval. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2969-2979. doi: 10.3934/dcds.2016.36.2969 [18] David Ralston, Serge Troubetzkoy. Ergodicity of certain cocycles over certain interval exchanges. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2523-2529. doi: 10.3934/dcds.2013.33.2523 [19] Tomas Persson. Typical points and families of expanding interval mappings. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4019-4034. doi: 10.3934/dcds.2017170 [20] Liviana Palmisano. Unbounded regime for circle maps with a flat interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2099-2122. doi: 10.3934/dcds.2015.35.2099

2017 Impact Factor: 0.994