December 2018, 10(4): 467-502. doi: 10.3934/jgm.2018018

A coordinate-free theory of virtual holonomic constraints

1. 

Dipartimento di Ingegneria dell'Informazione, Università di Parma, Parco Area delle Scienze 181/a, 43124 Parma, Italy

2. 

Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada

* Corresponding author

Some of the ideas of this paper appeared in preliminary form in [11]

Received  September 2017 Revised  September 2018 Published  November 2018

This paper presents a coordinate-free formulation of virtual holonomic constraints for underactuated Lagrangian control systems on Riemannian manifolds. It is shown that when a virtual constraint enjoys a regularity property, the constrained dynamics are described by an affine connection dynamical system. The affine connection of the constrained system has an elegant relationship to the Riemannian connection of the original Lagrangian control system. Necessary and sufficient conditions are given for the constrained dynamics to be Lagrangian. A key condition is that the affine connection of the constrained dynamics be metrizable. Basic results on metrizability of affine connections are first reviewed, then employed in three examples in order of increasing complexity. The last example is a double pendulum on a cart with two different actuator configurations. For this control system, a virtual constraint is employed which confines the second pendulum to within the upper half-plane.

Citation: Luca Consolini, Alessandro Costalunga, Manfredi Maggiore. A coordinate-free theory of virtual holonomic constraints. Journal of Geometric Mechanics, 2018, 10 (4) : 467-502. doi: 10.3934/jgm.2018018
References:
[1]

W. Ambrose and I. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443. doi: 10.1090/S0002-9947-1953-0063739-1.

[2]

P. Appell, Exemple de mouvement d'un point assujetti à une liaison exprimèe par une relation non-linéaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 32 (1911), 48-50.

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), 2nd edition, Springer, 1989. doi: 10.1007/978-1-4757-2063-1.

[4]

L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Annals of Mathematics, 62 (1955), 139-151. doi: 10.2307/2007104.

[5]

H. Beghin, Étude Théorique des Compas Gyrostatiques Anschütz et Sperry, PhD thesis, Faculté des sciences de Paris, 1922.

[6]

W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, vol. 120, 2nd edition, Academic press, 1986.

[7]

F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Texts in Applied Mathematics, Springer, 2005. doi: 10.1007/978-1-4899-7276-7.

[8]

C. ChevallereauJ. Grizzle and C. Shih, Asymptotically stable walking of a five-link underactuated 3D bipedal robot, IEEE Transactions on Robotics, 25 (2008), 37-50.

[9]

F. Clarke, Y. S. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analyisis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998.

[10]

L. ConsoliniM. MaggioreC. Nielsen and M. Tosques, Path following for the PVTOL aircraft, Automatica, 46 (2010), 1284-1296. doi: 10.1016/j.automatica.2010.05.014.

[11]

L. Consolini and A. Costalunga, Induced connections on virtual holonomic constraints, in IEEE Conference on Decision and Control (CDC), IEEE, 2015,139–144.

[12]

M. do Carmo, Riemannian Geometry, Birkhäuser Boston, 1992. doi: 10.1007/978-1-4757-2201-7.

[13]

L. FreidovichA. RobertssonA. Shiriaev and R. Johansson, Periodic motions of the pendubot via virtual holonomic constraints: Theory and experiments, Automatica, 44 (2008), 785-791. doi: 10.1016/j.automatica.2007.07.011.

[14]

L. Godinho and J. Natário, An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity, Springer, 2014. doi: 10.1007/978-3-319-08666-8.

[15]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer, New York, 1995. doi: 10.1007/978-1-84628-615-5.

[16]

D. Jankuloski, M. Maggiore and L. Consolini, Further results on virtual holonomic constraints, in Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro, Italy, 2012.

[17]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, no. v. 1 in A Wiley Publication in Applied Statistics, Wiley, 1996.

[18]

O. Kowalski, Metrizability of affine connections on analytic manifolds, Note di Matematica, 8 (1988), 1-11.

[19]

J. Lee, Riemannian Manifolds. An Introduction to Curvature, Graduate texts in mathematics 0176, Springer, 1997. doi: 10.1007/b98852.

[20]

J. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, Springer, 2013.

[21]

M. Maggiore and L. Consolini, Virtual holonomic constraints for Euler-Lagrange systems, Automatic Control, IEEE Transactions on, 58 (2013), 1001-1008. doi: 10.1109/TAC.2012.2215538.

[22]

A. MohammadiM. Maggiore and L. Consolini, When is a Lagrangian control system with virtual holonomic constraints Lagrangian?, Proceedings of NOLCOS 2013, 9 (2013), 512-517.

[23]

A. MohammadiM. Maggiore and L. Consolini, On the lagrangian structure of reduced dynamics under virtual holonomic constraints, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 913-935. doi: 10.1051/cocv/2016020.

[24]

J. NakanishiT. Fukuda and D. Koditschek, A brachiating robot controller, IEEE Transactions on Robotics and Automation, 16 (2000), 109-123.

[25]

H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems., Springer - Verlag, New York, 1990. doi: 10.1007/978-1-4757-2101-0.

[26]

K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.

[27]

F. PlestanJ. GrizzleE. Westervelt and G. Abba, Stable walking of a 7-DOF biped robot, IEEE Transactions on Robotics and Automation, 19 (2003), 653-668.

[28]

W. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981.

[29]

S. Ricardo and W. Respondek, When is a control system mechanical?, Journal of Geometric Mechanics, 2 (2010), 265-302. doi: 10.3934/jgm.2010.2.265.

[30]

B. Schmidt, Conditions on a connection to be a metric connection, Communications in Mathematical Physics, 29 (1973), 55-59. doi: 10.1007/BF01661152.

[31]

A. ShiriaevJ. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Transactions on Automatic Control., 50 (2005), 1164-1176. doi: 10.1109/TAC.2005.852568.

[32]

A. ShiriaevA. RobertssonJ. Perram and A. Sandberg, Periodic motion planning for virtually constrained Euler-Lagrange systems, Systems & Control Letters, 55 (2006), 900-907. doi: 10.1016/j.sysconle.2006.06.007.

[33]

A. ShiriaevL. Freidovich and S. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom, IEEE Transactions on Automatic Control, 55 (2010), 893-906. doi: 10.1109/TAC.2010.2042000.

[34]

G. Thompson, Local and global existence of metrics in two-dimensional affine manifolds, Chinese Journal of Physics, 29 (1991), 529-532.

[35]

A. Vanžurová, Metrization problem for linear connections and holonomy algebras, Archivum Mathematicum (BRNO), 44 (2008), 511-521.

[36]

A. Vanžurová and P. Žáčková, Metrizability of connections on two-manifolds, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 48 (2009), 157-170.

[37]

E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion, Taylor & Francis, CRC Press, 2007.

[38]

E. WesterveltJ. Grizzle and D. Koditschek, Hybrid zero dynamics of planar biped robots, IEEE Transactions on Automatic Control, 48 (2003), 42-56. doi: 10.1109/TAC.2002.806653.

show all references

References:
[1]

W. Ambrose and I. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443. doi: 10.1090/S0002-9947-1953-0063739-1.

[2]

P. Appell, Exemple de mouvement d'un point assujetti à une liaison exprimèe par une relation non-linéaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 32 (1911), 48-50.

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), 2nd edition, Springer, 1989. doi: 10.1007/978-1-4757-2063-1.

[4]

L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Annals of Mathematics, 62 (1955), 139-151. doi: 10.2307/2007104.

[5]

H. Beghin, Étude Théorique des Compas Gyrostatiques Anschütz et Sperry, PhD thesis, Faculté des sciences de Paris, 1922.

[6]

W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, vol. 120, 2nd edition, Academic press, 1986.

[7]

F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Texts in Applied Mathematics, Springer, 2005. doi: 10.1007/978-1-4899-7276-7.

[8]

C. ChevallereauJ. Grizzle and C. Shih, Asymptotically stable walking of a five-link underactuated 3D bipedal robot, IEEE Transactions on Robotics, 25 (2008), 37-50.

[9]

F. Clarke, Y. S. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analyisis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998.

[10]

L. ConsoliniM. MaggioreC. Nielsen and M. Tosques, Path following for the PVTOL aircraft, Automatica, 46 (2010), 1284-1296. doi: 10.1016/j.automatica.2010.05.014.

[11]

L. Consolini and A. Costalunga, Induced connections on virtual holonomic constraints, in IEEE Conference on Decision and Control (CDC), IEEE, 2015,139–144.

[12]

M. do Carmo, Riemannian Geometry, Birkhäuser Boston, 1992. doi: 10.1007/978-1-4757-2201-7.

[13]

L. FreidovichA. RobertssonA. Shiriaev and R. Johansson, Periodic motions of the pendubot via virtual holonomic constraints: Theory and experiments, Automatica, 44 (2008), 785-791. doi: 10.1016/j.automatica.2007.07.011.

[14]

L. Godinho and J. Natário, An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity, Springer, 2014. doi: 10.1007/978-3-319-08666-8.

[15]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer, New York, 1995. doi: 10.1007/978-1-84628-615-5.

[16]

D. Jankuloski, M. Maggiore and L. Consolini, Further results on virtual holonomic constraints, in Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro, Italy, 2012.

[17]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, no. v. 1 in A Wiley Publication in Applied Statistics, Wiley, 1996.

[18]

O. Kowalski, Metrizability of affine connections on analytic manifolds, Note di Matematica, 8 (1988), 1-11.

[19]

J. Lee, Riemannian Manifolds. An Introduction to Curvature, Graduate texts in mathematics 0176, Springer, 1997. doi: 10.1007/b98852.

[20]

J. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, Springer, 2013.

[21]

M. Maggiore and L. Consolini, Virtual holonomic constraints for Euler-Lagrange systems, Automatic Control, IEEE Transactions on, 58 (2013), 1001-1008. doi: 10.1109/TAC.2012.2215538.

[22]

A. MohammadiM. Maggiore and L. Consolini, When is a Lagrangian control system with virtual holonomic constraints Lagrangian?, Proceedings of NOLCOS 2013, 9 (2013), 512-517.

[23]

A. MohammadiM. Maggiore and L. Consolini, On the lagrangian structure of reduced dynamics under virtual holonomic constraints, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 913-935. doi: 10.1051/cocv/2016020.

[24]

J. NakanishiT. Fukuda and D. Koditschek, A brachiating robot controller, IEEE Transactions on Robotics and Automation, 16 (2000), 109-123.

[25]

H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems., Springer - Verlag, New York, 1990. doi: 10.1007/978-1-4757-2101-0.

[26]

K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.

[27]

F. PlestanJ. GrizzleE. Westervelt and G. Abba, Stable walking of a 7-DOF biped robot, IEEE Transactions on Robotics and Automation, 19 (2003), 653-668.

[28]

W. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981.

[29]

S. Ricardo and W. Respondek, When is a control system mechanical?, Journal of Geometric Mechanics, 2 (2010), 265-302. doi: 10.3934/jgm.2010.2.265.

[30]

B. Schmidt, Conditions on a connection to be a metric connection, Communications in Mathematical Physics, 29 (1973), 55-59. doi: 10.1007/BF01661152.

[31]

A. ShiriaevJ. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Transactions on Automatic Control., 50 (2005), 1164-1176. doi: 10.1109/TAC.2005.852568.

[32]

A. ShiriaevA. RobertssonJ. Perram and A. Sandberg, Periodic motion planning for virtually constrained Euler-Lagrange systems, Systems & Control Letters, 55 (2006), 900-907. doi: 10.1016/j.sysconle.2006.06.007.

[33]

A. ShiriaevL. Freidovich and S. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom, IEEE Transactions on Automatic Control, 55 (2010), 893-906. doi: 10.1109/TAC.2010.2042000.

[34]

G. Thompson, Local and global existence of metrics in two-dimensional affine manifolds, Chinese Journal of Physics, 29 (1991), 529-532.

[35]

A. Vanžurová, Metrization problem for linear connections and holonomy algebras, Archivum Mathematicum (BRNO), 44 (2008), 511-521.

[36]

A. Vanžurová and P. Žáčková, Metrizability of connections on two-manifolds, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 48 (2009), 157-170.

[37]

E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion, Taylor & Francis, CRC Press, 2007.

[38]

E. WesterveltJ. Grizzle and D. Koditschek, Hybrid zero dynamics of planar biped robots, IEEE Transactions on Automatic Control, 48 (2003), 42-56. doi: 10.1109/TAC.2002.806653.

Figure 1.  Transversality condition in the definition of regular VHC
Figure 2.  The vector bundle map $\sigma: T {\cal Q}|_{\cal C} \to T {\cal C}$
Figure 3.  Coordinate systems used in Section 4.3
Figure 4.  The set ${\cal C}$ in Example 1 and its parametrization
Figure 5.  The VHC ${\cal C}$ in Example 2 and its parametrization
Figure 6.  Illustration of the case when the control accelerations are orthogonal to ${\cal C}$
Figure 7.  The parallel transport map at the north pole of the unit sphere in $\mathbb{R}^3$, with Riemannian connection induced by the Euclidean metric in $\mathbb{R}^3$. The loop $\gamma_q$ is a triangle on the sphere
Figure 8.  The double pendulum on a cart of Example 3. Case (a): control force on the cart. Case (b): control torque on the last joint. The orthogonal frame in the figure is the inertial reference frame
Figure 9.  Configurations of the double pendulum on the VHC ${\cal C}$ of Example 3. The missing configurations on the right-hand side are deduced by symmetry with respect to the vertical axis
Figure 10.  Parallel transport on $\mathbb{R} \times \mathbb{S}^1$ from $(0, 0)$ to $(s^1, s^2)$
Figure 11.  $(q_2, \dot q_2)$ orbits of a few solutions of the double pendulum on a cart subject to the VHC $q_3 = \rho(q_2)$. On the left, case (a) (force on cart). On the right, case (b) (torque on last joint)
[1]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[2]

E. Minguzzi. A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena. Journal of Geometric Mechanics, 2015, 7 (4) : 473-482. doi: 10.3934/jgm.2015.7.473

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[5]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[6]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[7]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[8]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[9]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[10]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[11]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[12]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[13]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[14]

Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1

[15]

Andrew James Bruce, Katarzyna Grabowska, Giovanni Moreno. On a geometric framework for Lagrangian supermechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 411-437. doi: 10.3934/jgm.2017016

[16]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[17]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[18]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[19]

Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265

[20]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (36)
  • HTML views (77)
  • Cited by (0)

[Back to Top]