December 2018, 10(4): 419-443. doi: 10.3934/jgm.2018016

Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada

* Corresponding author: Richard Cushman

Received  July 2017 Revised  September 2018 Published  November 2018

In this paper we give the Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum.

Citation: Richard Cushman, Jędrzej Śniatycki. Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum. Journal of Geometric Mechanics, 2018, 10 (4) : 419-443. doi: 10.3934/jgm.2018016
References:
[1]

N. Bohr, On the constitution of atoms and molecules (part Ⅰ), Philosophical Magazine, 26 (1913), 1-25.

[2]

R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.

[3]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld-Heisenberg theory in geometric quantization, J. Fixed Point Theory Appl., 13 (2013), 3-24. doi: 10.1007/s11784-013-0118-3.

[4]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld Heisenberg quantization of the $2$-dimensional harmonic oscillator, arXiv: 1207.1477.

[5]

R. Cushman and J. Śniatycki, Shifting operators in geometric quantization, arXiv: 1808.04002.

[6]

P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. London, 109 (1925), 642-653.

[7]

P. A. M. Dirac, The Principles of Quantum Mechanics, 3d ed. Oxford, at the Clarendon Press, 1947.

[8]

H. Dullin, Semi-global symplectic invariants of the spherical pendulum, J. Differential Equations, 254 (2013), 2942-2963. doi: 10.1016/j.jde.2013.01.018.

[9]

W. Heisenberg, Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, (German) [On the quantum theoretical meaning of kinematic and mechanical relationship], Z. Phys., 33 (1925), 879-893.

[10]

J. Śniatycki, Geometric Quantization and Quantum Mechanics, Applied Mathematical Series 30 Springer Verlag, New York, 1980.

[11]

A. Sommerfeld, Zur Theorie der Balmerschen Serie, (German) [On the theory of the Balmer series], Sitzungberichte der Bayerischen Akademie der Wissenschaften (Mü nchen), mathematisch-physikalische Klasse, (1915), 425-458.

show all references

References:
[1]

N. Bohr, On the constitution of atoms and molecules (part Ⅰ), Philosophical Magazine, 26 (1913), 1-25.

[2]

R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.

[3]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld-Heisenberg theory in geometric quantization, J. Fixed Point Theory Appl., 13 (2013), 3-24. doi: 10.1007/s11784-013-0118-3.

[4]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld Heisenberg quantization of the $2$-dimensional harmonic oscillator, arXiv: 1207.1477.

[5]

R. Cushman and J. Śniatycki, Shifting operators in geometric quantization, arXiv: 1808.04002.

[6]

P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. London, 109 (1925), 642-653.

[7]

P. A. M. Dirac, The Principles of Quantum Mechanics, 3d ed. Oxford, at the Clarendon Press, 1947.

[8]

H. Dullin, Semi-global symplectic invariants of the spherical pendulum, J. Differential Equations, 254 (2013), 2942-2963. doi: 10.1016/j.jde.2013.01.018.

[9]

W. Heisenberg, Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, (German) [On the quantum theoretical meaning of kinematic and mechanical relationship], Z. Phys., 33 (1925), 879-893.

[10]

J. Śniatycki, Geometric Quantization and Quantum Mechanics, Applied Mathematical Series 30 Springer Verlag, New York, 1980.

[11]

A. Sommerfeld, Zur Theorie der Balmerschen Serie, (German) [On the theory of the Balmer series], Sitzungberichte der Bayerischen Akademie der Wissenschaften (Mü nchen), mathematisch-physikalische Klasse, (1915), 425-458.

Figure 1.  The graph of $H\left( {x,y} \right) = \frac{1}{2}{y^2} - \cos x + 1$ with $\left( {x,y} \right) \in \left[ { - \mathit{\boldsymbol{\pi }},\mathit{\boldsymbol{\pi }}} \right] \times {\mathbb{R}}$
Figure 2.  The ${\mathbb{Z}}_2$-reduced space in ${\mathbb{R}}^3$
[1]

Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991

[2]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[3]

Mrinal Kanti Roychowdhury. Quantization coefficients for ergodic measures on infinite symbolic space. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2829-2846. doi: 10.3934/dcds.2014.34.2829

[4]

Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167

[5]

Mrinal Kanti Roychowdhury. Least upper bound of the exact formula for optimal quantization of some uniform Cantor distributions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4555-4570. doi: 10.3934/dcds.2018199

[6]

Dmitrii Rachinskii. On geometric conditions for reduction of the Moreau sweeping process to the Prandtl-Ishlinskii operator. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3361-3386. doi: 10.3934/dcdsb.2018246

[7]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[8]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

[9]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[10]

Chunpeng Wang, Jingxue Yin, Bibo Lu. Anti-shifting phenomenon of a convective nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1211-1236. doi: 10.3934/dcdsb.2010.14.1211

[11]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[12]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[13]

Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429

[14]

Jean-Francois Bertazzon. Symbolic approach and induction in the Heisenberg group. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1209-1229. doi: 10.3934/dcds.2012.32.1209

[15]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[16]

Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413

[17]

Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015

[18]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

[19]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[20]

M. DeDeo, M. Martínez, A. Medrano, M. Minei, H. Stark, A. Terras. Spectra of Heisenberg graphs over finite rings. Conference Publications, 2003, 2003 (Special) : 213-222. doi: 10.3934/proc.2003.2003.213

2017 Impact Factor: 0.561

Article outline

Figures and Tables

[Back to Top]