December 2018, 10(4): 373-410. doi: 10.3934/jgm.2018014

Generalized variational calculus for continuous and discrete mechanical systems

1. 

Departamento de Matemática, Universidad Nacional del Sur (UNS), Avenida Alem 1253, 8000 Bahía Blanca, Argentina

2. 

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Nicolás Cabrera, 13-15, Campus Cantoblanco, UAM, 28049 Madrid, Spain

Received  October 2014 Revised  September 2018 Published  November 2018

Fund Project: This work has been partially supported by UNS, Argentina (project PGI 24/ZL06); FONCYT, Argentina (project PICT 2010-2746); CONICET, Argentina (project PIP 2010–2012 11220090101018); MEC (Spain) Grants MTM2013-42870-P, MTM2009-08166-E, and IRSES-project "Geomech-246981"

In this paper, we consider a generalization of variational calculus which allows us to consider in the same framework different cases of mechanical systems, for instance, Lagrangian mechanics, Hamiltonian mechanics, systems subjected to constraints, optimal control theory... This generalized variational calculus is based on two main notions: the tangent lift of curves and the notion of complete lift of a vector field. Both concepts are also adapted for the case of skew-symmetric algebroids, therefore, our formalism easily extends to the case of Lie algebroids and nonholonomic systems (see also [20]). Hence, this framework automatically includes reduced mechanical systems subjected or not to constraints. Finally, we show that our formalism can be used to tackle the case of discrete mechanics, including reduced systems, systems subjected to constraints and discrete optimal control theory.

Citation: Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014
References:
[1]

R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison Wesley, second edition, 1978.

[2]

J. L. Anderson and P. G. Bergmann, Constraints in covariant field theories, Physical Rev. (2), 83 (1951), 1018-1025. doi: 10.1103/PhysRev.83.1018.

[3]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, volume 3 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, third edition, 2006. [Dynamical systems. Ⅲ], Translated from the Russian original by E. Khukhro.

[4]

M. Barbero-LiñánM. de LeónD. Martín de DiegoJ. C. Marrero and M. C. Muñoz Lecanda, Kinematic reduction and the Hamilton-Jacobi equation, Journal of Geometric Mechanics, 4 (2012), 207-237. doi: 10.3934/jgm.2012.4.207.

[5]

M. Barbero-Liñán and M. C. Muñoz-Lecanda, Geometric approach to Pontryagin's maximum principle, Acta Appl. Math., 108 (2009), 429-485. doi: 10.1007/s10440-008-9320-5.

[6]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems, Dyn. Syst., 24 (2009), 187-222. doi: 10.1080/14689360802609344.

[7]

A. M. Bloch and P. E. Crouch, Nonholonomic and vakonomic control systems on Riemannian manifolds, Dynamics and Control of Mechanical Systems, the Falling Cat and Related Problems, 1 (1993), 25-52.

[8]

B. Bonnard and M. Chyba, Sub-Riemannian geometry: The martinet case, In Geometric Control and Non-Holonomic Mechanics, volume 25, pages 79-100. Canadian Mathematical society, 1998.

[9]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325. doi: 10.1016/0393-0440(95)00016-X.

[10]

J. Cortés MonforteM. de LeónD. Martín de Diego and S. Martinez, Geometric description of vakonomic and nonholonomic dynamics, comparison of solutions, SIAM Journal on Control and Optimization, 5 (2003), 1389-1412. doi: 10.1137/S036301290036817X.

[11]

J. Cortés MonforteM. de León and S. Martinez, The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems. the vakonomic bracket, J. Math. Phys., 41 (2000), 2090-2120. doi: 10.1063/1.533229.

[12]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics. Dynamical systems, An International Journal, 25 (2010), 159-187. doi: 10.1080/14689360903360888.

[13]

M. de León, F. Jiménez and D. Martín de Diego, Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings, J. Phys. A, 45 (2012), 205204, 29pp. doi: 10.1088/1751-8113/45/20/205204.

[14]

M. de LeónJ. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. of Algebra, 129 (1990), 194-230.

[15]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, volume 112 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 1985).

[16]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 1989.

[17]

P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math., 2 (1950), 129-148.

[18]

P. A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326-332.

[19]

P. A. M. Dirac, Lectures on Quantum Mechanics, volume 2 of Belfer Graduate School of Science Monographs Series, Belfer Graduate School of Science, New York; produced and distributed by Academic Press, Inc., New York, 1967. Second printing of the 1964 original.

[20]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, Journal of Physics A: Mathematical and theoretical, 41 (2008), 175204, 25 pp. doi: 10.1088/1751-8113/41/17/175204.

[21]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17pp. doi: 10.1063/1.3049752.

[22]

P. A. Griffiths, Exterior Differential Systems and the Calculus of Variations, volume 25 of Progress in Mathematics. Birkhäuser, Boston, Mass., 1983.

[23]

D. D. Holm, Geometric Mechanics. Part Ⅰ, Imperial College Press, London, second edition, 2011. Dynamics and symmetry.

[24]

D. D. Holm, Geometric Mechanics. Part Ⅱ. Rotating, Translating and Rolling, Imperial College Press, London, second edition, 2011. doi: 10.1142/p802.

[25]

L. Hsu, Calculus of variations via the Griffiths formalism, J. Differential Geom., 36 (1992), 551-589.

[26]

A. IbortM. de LeónJ. C. Marrero and D. Martín de Diego, Dirac brackets in constrained dynamics, Fortschr. Phys., 47 (1999), 459-492. doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E.

[27]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, A general framework for nonholonomic mechanics: Nonholonomic systems on Lie affgebroids, Journal of Mathematical Physics. Amer. Inst. Phys., 48 (2007), 083513, 45 pp. doi: 10.1063/1.2776845.

[28]

D. IglesiasJ. C. MarreroD. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems: And International Journal, 23 (2008), 351-397. doi: 10.1080/14689360802294220.

[29]

D. Iglesias-PonteJ. C. MarreroD. Martín de Diego and E. Padrón, Discrete dynamics in implicit form, Discrete Contin. Dyn. Syst., 33 (2013), 1117-1135. doi: 10.3934/dcds.2013.33.1117.

[30]

V. V. Kozlov, On the realization of constraints in dynamics, Prikl. Mat. Mekh., 56 (1992), 692-698. doi: 10.1016/0021-8928(92)90017-3.

[31]

A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiments, Int. J. Nonlinear Mech., 30 (1995), 793-815. doi: 10.1016/0020-7462(95)00024-0.

[32]

F. L. Lewis, Optimal Control, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1986.

[33]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Math. Soc. Lect. Notes Series, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511661839.

[34]

K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415-452. doi: 10.1215/S0012-7094-94-07318-3.

[35]

J. C. MarreroD. Martín de Diego and A. Stern, Symplectic groupoids and discrete constrained Lagrangian mechanics, DCDS-A, 35 (2015), 367-397. doi: 10.3934/dcds.2015.35.367.

[36]

J. C. MarreroD. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. doi: 10.1088/0951-7715/19/6/006.

[37]

J. C. Marrero, D. Martín de Diego and E. Martínez, The local description of discrete mechanics, Geometry, Mechanics, and Dynamics, 285-317, Fields Inst. Commun., 73, Springer, New York, 2015. doi: 10.1007/978-1-4939-2441-7_13.

[38]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[39]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, volume 17. Springer-Verlag, New York, 1994. Second edition, 1999. doi: 10.1007/978-0-387-21792-5.

[40]

E. Martínez, Lagrangian mechanics on Lie algebroids, Acta. Appl. Math., 67 (2001), 295-320. doi: 10.1023/A:1011965919259.

[41]

E. Martínez, Reduction in optimal control theory, Rep. Math. Phys., 53 (2004), 79-90. doi: 10.1016/S0034-4877(04)90005-5.

[42]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.

[43]

L. A. Pars, Treatise on Analytical Dynamics, Heinemann, London, 1965.

[44]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated by D. E. Brown. A Pergamon Press Book. The Macmillan Co., New York, 1964.

[45]

W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A675-A678.

[46]

A. Weinstein, A universal phase space for particles in yang-mills fields, Lett. Math. Phys., 2 (1978), 417-420. doi: 10.1007/BF00400169.

[47]

A. Weinstein, Lagrangian mechanics and groupoids, Mechanics Day (Waterloo, ON, 1992) Fields Institute Communications, 7 (1996), 207-231.

[48]

E. T. Whittaker, Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, 1959.

[49]

G. Zampieri, Nonholonomic versus vakonomic dynamics, J. Diff. Equations, 163 (2000), 335-347. doi: 10.1006/jdeq.1999.3727.

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison Wesley, second edition, 1978.

[2]

J. L. Anderson and P. G. Bergmann, Constraints in covariant field theories, Physical Rev. (2), 83 (1951), 1018-1025. doi: 10.1103/PhysRev.83.1018.

[3]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, volume 3 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, third edition, 2006. [Dynamical systems. Ⅲ], Translated from the Russian original by E. Khukhro.

[4]

M. Barbero-LiñánM. de LeónD. Martín de DiegoJ. C. Marrero and M. C. Muñoz Lecanda, Kinematic reduction and the Hamilton-Jacobi equation, Journal of Geometric Mechanics, 4 (2012), 207-237. doi: 10.3934/jgm.2012.4.207.

[5]

M. Barbero-Liñán and M. C. Muñoz-Lecanda, Geometric approach to Pontryagin's maximum principle, Acta Appl. Math., 108 (2009), 429-485. doi: 10.1007/s10440-008-9320-5.

[6]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems, Dyn. Syst., 24 (2009), 187-222. doi: 10.1080/14689360802609344.

[7]

A. M. Bloch and P. E. Crouch, Nonholonomic and vakonomic control systems on Riemannian manifolds, Dynamics and Control of Mechanical Systems, the Falling Cat and Related Problems, 1 (1993), 25-52.

[8]

B. Bonnard and M. Chyba, Sub-Riemannian geometry: The martinet case, In Geometric Control and Non-Holonomic Mechanics, volume 25, pages 79-100. Canadian Mathematical society, 1998.

[9]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325. doi: 10.1016/0393-0440(95)00016-X.

[10]

J. Cortés MonforteM. de LeónD. Martín de Diego and S. Martinez, Geometric description of vakonomic and nonholonomic dynamics, comparison of solutions, SIAM Journal on Control and Optimization, 5 (2003), 1389-1412. doi: 10.1137/S036301290036817X.

[11]

J. Cortés MonforteM. de León and S. Martinez, The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems. the vakonomic bracket, J. Math. Phys., 41 (2000), 2090-2120. doi: 10.1063/1.533229.

[12]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics. Dynamical systems, An International Journal, 25 (2010), 159-187. doi: 10.1080/14689360903360888.

[13]

M. de León, F. Jiménez and D. Martín de Diego, Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings, J. Phys. A, 45 (2012), 205204, 29pp. doi: 10.1088/1751-8113/45/20/205204.

[14]

M. de LeónJ. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. of Algebra, 129 (1990), 194-230.

[15]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, volume 112 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 1985).

[16]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 1989.

[17]

P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math., 2 (1950), 129-148.

[18]

P. A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326-332.

[19]

P. A. M. Dirac, Lectures on Quantum Mechanics, volume 2 of Belfer Graduate School of Science Monographs Series, Belfer Graduate School of Science, New York; produced and distributed by Academic Press, Inc., New York, 1967. Second printing of the 1964 original.

[20]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, Journal of Physics A: Mathematical and theoretical, 41 (2008), 175204, 25 pp. doi: 10.1088/1751-8113/41/17/175204.

[21]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17pp. doi: 10.1063/1.3049752.

[22]

P. A. Griffiths, Exterior Differential Systems and the Calculus of Variations, volume 25 of Progress in Mathematics. Birkhäuser, Boston, Mass., 1983.

[23]

D. D. Holm, Geometric Mechanics. Part Ⅰ, Imperial College Press, London, second edition, 2011. Dynamics and symmetry.

[24]

D. D. Holm, Geometric Mechanics. Part Ⅱ. Rotating, Translating and Rolling, Imperial College Press, London, second edition, 2011. doi: 10.1142/p802.

[25]

L. Hsu, Calculus of variations via the Griffiths formalism, J. Differential Geom., 36 (1992), 551-589.

[26]

A. IbortM. de LeónJ. C. Marrero and D. Martín de Diego, Dirac brackets in constrained dynamics, Fortschr. Phys., 47 (1999), 459-492. doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E.

[27]

D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, A general framework for nonholonomic mechanics: Nonholonomic systems on Lie affgebroids, Journal of Mathematical Physics. Amer. Inst. Phys., 48 (2007), 083513, 45 pp. doi: 10.1063/1.2776845.

[28]

D. IglesiasJ. C. MarreroD. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems: And International Journal, 23 (2008), 351-397. doi: 10.1080/14689360802294220.

[29]

D. Iglesias-PonteJ. C. MarreroD. Martín de Diego and E. Padrón, Discrete dynamics in implicit form, Discrete Contin. Dyn. Syst., 33 (2013), 1117-1135. doi: 10.3934/dcds.2013.33.1117.

[30]

V. V. Kozlov, On the realization of constraints in dynamics, Prikl. Mat. Mekh., 56 (1992), 692-698. doi: 10.1016/0021-8928(92)90017-3.

[31]

A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiments, Int. J. Nonlinear Mech., 30 (1995), 793-815. doi: 10.1016/0020-7462(95)00024-0.

[32]

F. L. Lewis, Optimal Control, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1986.

[33]

K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Math. Soc. Lect. Notes Series, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511661839.

[34]

K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415-452. doi: 10.1215/S0012-7094-94-07318-3.

[35]

J. C. MarreroD. Martín de Diego and A. Stern, Symplectic groupoids and discrete constrained Lagrangian mechanics, DCDS-A, 35 (2015), 367-397. doi: 10.3934/dcds.2015.35.367.

[36]

J. C. MarreroD. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. doi: 10.1088/0951-7715/19/6/006.

[37]

J. C. Marrero, D. Martín de Diego and E. Martínez, The local description of discrete mechanics, Geometry, Mechanics, and Dynamics, 285-317, Fields Inst. Commun., 73, Springer, New York, 2015. doi: 10.1007/978-1-4939-2441-7_13.

[38]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[39]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, volume 17. Springer-Verlag, New York, 1994. Second edition, 1999. doi: 10.1007/978-0-387-21792-5.

[40]

E. Martínez, Lagrangian mechanics on Lie algebroids, Acta. Appl. Math., 67 (2001), 295-320. doi: 10.1023/A:1011965919259.

[41]

E. Martínez, Reduction in optimal control theory, Rep. Math. Phys., 53 (2004), 79-90. doi: 10.1016/S0034-4877(04)90005-5.

[42]

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.

[43]

L. A. Pars, Treatise on Analytical Dynamics, Heinemann, London, 1965.

[44]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated by D. E. Brown. A Pergamon Press Book. The Macmillan Co., New York, 1964.

[45]

W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A675-A678.

[46]

A. Weinstein, A universal phase space for particles in yang-mills fields, Lett. Math. Phys., 2 (1978), 417-420. doi: 10.1007/BF00400169.

[47]

A. Weinstein, Lagrangian mechanics and groupoids, Mechanics Day (Waterloo, ON, 1992) Fields Institute Communications, 7 (1996), 207-231.

[48]

E. T. Whittaker, Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, 1959.

[49]

G. Zampieri, Nonholonomic versus vakonomic dynamics, J. Diff. Equations, 163 (2000), 335-347. doi: 10.1006/jdeq.1999.3727.

[1]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[4]

Anthony M. Bloch, Melvin Leok, Jerrold E. Marsden, Dmitry V. Zenkov. Controlled Lagrangians and stabilization of discrete mechanical systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 19-36. doi: 10.3934/dcdss.2010.3.19

[5]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[6]

Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425

[7]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[8]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[9]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks & Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[10]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[11]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[12]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[13]

Manuel Falconi, E. A. Lacomba, C. Vidal. The flow of classical mechanical cubic potential systems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 827-842. doi: 10.3934/dcds.2004.11.827

[14]

Franco Cardin, Alberto Lovison. Finite mechanical proxies for a class of reducible continuum systems. Networks & Heterogeneous Media, 2014, 9 (3) : 417-432. doi: 10.3934/nhm.2014.9.417

[15]

Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91

[16]

Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91

[17]

Vadim Azhmyakov. An approach to controlled mechanical systems based on the multiobjective optimization technique. Journal of Industrial & Management Optimization, 2008, 4 (4) : 697-712. doi: 10.3934/jimo.2008.4.697

[18]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[19]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[20]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (53)
  • HTML views (85)
  • Cited by (0)

[Back to Top]