September 2018, 10(3): 359-372. doi: 10.3934/jgm.2018013

Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction

1. 

Space Dynamics Group, DITEC, Facultad Informática, Universidad de Murcia, 30100 Campus de Espinardo. Murcia, Spain

2. 

Grupo GISDA, Dept. de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Av. Collao 1202. Concepción, Chile

* Corresponding author

Received  October 2017 Revised  May 2018 Published  August 2018

Fund Project: Support came from MTM2015-64095-P, ESP2013-41634-P and FONDECYT 11160224.

The $\mathcal{KS}$ map is revisited in terms of an $S^1$-action in $T^*\mathbb{H}_0$ with the bilinear function as the associated momentum map. Indeed, the $\mathcal{KS}$ transformation maps the $S^1$-fibers related to the mentioned action to single points. By means of this perspective a second twin-bilinear function is obtained with an analogous $S^1$-action. We also show that the connection between the 4-D isotropic harmonic oscillator and the spatial Kepler systems can be done in a straightforward way after regularization and through the extension to 4 degrees of freedom of the Euler angles, when the bilinear relation is imposed. This connection incorporates both bilinear functions among the variables. We will show that an alternative regularization separates the oscillator expressed in Projective Euler variables. This setting takes advantage of the two bilinear functions and another integral of the system including them among a new set of variables that allows to connect the 4-D isotropic harmonic oscillator and the planar Kepler system. In addition, our approach makes transparent that only when we refer to rectilinear solutions, both bilinear relations defining the $\mathcal{KS}$ transformations are needed.

Citation: Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013
References:
[1]

A. BarutC. Schneider and R. Wilson, Quantum theory of infinite quantum theory of infinite component fields, J. Math. Phys., 20 (1979), 2244-2256. doi: 10.1063/1.524005.

[2]

S. Breiter and K. Langner, Kustaanheimo-Stiefel transformation with an arbitrary defining vector, Celest. Mech. Dynamical Astron., 128 (2017), 323-342. doi: 10.1007/s10569-017-9754-z.

[3]

F. H. J. Cornish, The hydrogen atom and the four-dimensional harmonic oscillator, Journal of Physics A: Mathematical and General, 17 (1984), 323–327. doi: 10.1088/0305-4470/17/2/018.

[4]

F. Crespo, Hopf Fibration Reduction of a Quartic Model. An Application to Rotational and Orbital Dynamics, PhD. Universidad de Murcia.

[5]

R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, 2nd edition, Birkhäuser Verlag, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.

[6]

A. DepritA. Elipe and S. Ferrer, Linearization: Laplace vs. Stiefel, Celestial Mechanics and Dynamical Astronomy, 58 (1994), 151-201. doi: 10.1007/BF00695790.

[7]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Commentarii academiae scientiarum Petropolitanae, 11 (1767), 144-151.

[8]

S. Ferrer, The projective Andoyer transformation and the connection between the 4-d isotropic oscillator and Kepler systems, arXiv: 1011.3000v1 [nlin. SI].

[9]

S. Ferrer and F. Crespo, Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems, Journal of Geometric Mechanics, 6 (2014), 479-502. doi: 10.3934/jgm.2014.6.479.

[10]

H. Goldstein, C. Poole and J. Safko, Classical Mechanics, Addison Wesley, New York, Third edition, 2002.

[11]

W. Heard, Rigid Body Mechanics, WILEY-VCH Verlag GmbH & Co. KGaA, Mathematics, Physics and Applications, 2006. doi: 10.1002/9783527618811.

[12]

M. Ikeda and Y. Miyachi, On the mathematical structure of the symmetry of some simple dynamical systems, Mathematica Japonica, 15 (1970), 127-142.

[13]

M. Kibler and P. Winternitz, Dynamical invariance algebra of the hartmann potential, Journal of Physics A: Mathematical and General, 20 (1987), 4097-4108. doi: 10.1088/0305-4470/20/13/018.

[14]

J. Kuipers, Quaternions and Rotation Sequences, Princeton University text, Princeton, New Jersey, 1999.

[15]

M. Kummer, On the regularization of the Kepler problem, Communications in Mathematical Physics, 84 (1982), 133-152. doi: 10.1007/BF01208375.

[16]

P. Kustaanheimo, Spinor regularization of the Kepler motion, Annales Universitatis Turkuensis, 73 (1964), 7pp.

[17]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., 218 (1965), 204-219. doi: 10.1515/crll.1965.218.204.

[18]

T. Levi-Civita, Sur la régularisation du probléme des trois corps, Acta Mathematica, 42 (1920), 99-144. doi: 10.1007/BF02404404.

[19]

T. Ligon and M. Schaaf, On the global symmetry of the classical Kepler problem, Reports on Mathematical Physics, 9 (1976), 281-300. doi: 10.1016/0034-4877(76)90061-6.

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag New York, Inc., 1999. doi: 10.1007/978-0-387-21792-5.

[21]

K. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd Ed, vol. 90 of APM, Applied Mathematical Sciences, Springer, New York, 2009.

[22]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Communications on Pure and Applied Mathematics, 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[23]

J. RoaH. Urrutxua and J. Peláez, Stability and chaos in kustaanheimo-stiefel space induced by the hopf fibration, Monthly Notices of the Royal Astronomical Society, 459 (2016), 2444-2454. doi: 10.1093/mnras/stw780.

[24]

P. Saha, Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics, Mon. Not. R. Astron. Soc., 400 (2009), 228-231. doi: 10.1111/j.1365-2966.2009.15437.x.

[25]

J. Souriau, Sur la variete de Kepler, Convegno di Geometria Simplettica e Fisica Matematica, 14.

[26]

E. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, Springer, Berlin.

[27]

J. van der Meer, The Kepler system as a reduced 4d harmonic oscillator, Journal of Geometry and Physics, 92 (2015), 181-193. doi: 10.1016/j.geomphys.2015.02.016.

[28]

M. D. Vivarelli, The KS-transformation in hypercomplex form and the quantization of the negative-energy orbit manifold of the Kepler problem, Celestial mechanics, 36 (1985), 349-364. doi: 10.1007/BF01227489.

[29]

J. Waldvogel, Quaternions for regularizing celestial mechanics: The right way, Celest. Mech. Dynamical Astron., 102 (2008), 149-162. doi: 10.1007/s10569-008-9124-y.

[30]

L. Zhao, Kustaanheimo-Stiefel regularization and the quadrupolar conjugacy, Regul. Chaot. Dyn., 20 (2015), 19-36. doi: 10.1134/S1560354715010025.

show all references

References:
[1]

A. BarutC. Schneider and R. Wilson, Quantum theory of infinite quantum theory of infinite component fields, J. Math. Phys., 20 (1979), 2244-2256. doi: 10.1063/1.524005.

[2]

S. Breiter and K. Langner, Kustaanheimo-Stiefel transformation with an arbitrary defining vector, Celest. Mech. Dynamical Astron., 128 (2017), 323-342. doi: 10.1007/s10569-017-9754-z.

[3]

F. H. J. Cornish, The hydrogen atom and the four-dimensional harmonic oscillator, Journal of Physics A: Mathematical and General, 17 (1984), 323–327. doi: 10.1088/0305-4470/17/2/018.

[4]

F. Crespo, Hopf Fibration Reduction of a Quartic Model. An Application to Rotational and Orbital Dynamics, PhD. Universidad de Murcia.

[5]

R. Cushman and L. Bates, Global Aspects of Classical Integrable Systems, 2nd edition, Birkhäuser Verlag, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.

[6]

A. DepritA. Elipe and S. Ferrer, Linearization: Laplace vs. Stiefel, Celestial Mechanics and Dynamical Astronomy, 58 (1994), 151-201. doi: 10.1007/BF00695790.

[7]

L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Commentarii academiae scientiarum Petropolitanae, 11 (1767), 144-151.

[8]

S. Ferrer, The projective Andoyer transformation and the connection between the 4-d isotropic oscillator and Kepler systems, arXiv: 1011.3000v1 [nlin. SI].

[9]

S. Ferrer and F. Crespo, Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems, Journal of Geometric Mechanics, 6 (2014), 479-502. doi: 10.3934/jgm.2014.6.479.

[10]

H. Goldstein, C. Poole and J. Safko, Classical Mechanics, Addison Wesley, New York, Third edition, 2002.

[11]

W. Heard, Rigid Body Mechanics, WILEY-VCH Verlag GmbH & Co. KGaA, Mathematics, Physics and Applications, 2006. doi: 10.1002/9783527618811.

[12]

M. Ikeda and Y. Miyachi, On the mathematical structure of the symmetry of some simple dynamical systems, Mathematica Japonica, 15 (1970), 127-142.

[13]

M. Kibler and P. Winternitz, Dynamical invariance algebra of the hartmann potential, Journal of Physics A: Mathematical and General, 20 (1987), 4097-4108. doi: 10.1088/0305-4470/20/13/018.

[14]

J. Kuipers, Quaternions and Rotation Sequences, Princeton University text, Princeton, New Jersey, 1999.

[15]

M. Kummer, On the regularization of the Kepler problem, Communications in Mathematical Physics, 84 (1982), 133-152. doi: 10.1007/BF01208375.

[16]

P. Kustaanheimo, Spinor regularization of the Kepler motion, Annales Universitatis Turkuensis, 73 (1964), 7pp.

[17]

P. Kustaanheimo and E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., 218 (1965), 204-219. doi: 10.1515/crll.1965.218.204.

[18]

T. Levi-Civita, Sur la régularisation du probléme des trois corps, Acta Mathematica, 42 (1920), 99-144. doi: 10.1007/BF02404404.

[19]

T. Ligon and M. Schaaf, On the global symmetry of the classical Kepler problem, Reports on Mathematical Physics, 9 (1976), 281-300. doi: 10.1016/0034-4877(76)90061-6.

[20]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag New York, Inc., 1999. doi: 10.1007/978-0-387-21792-5.

[21]

K. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd Ed, vol. 90 of APM, Applied Mathematical Sciences, Springer, New York, 2009.

[22]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Communications on Pure and Applied Mathematics, 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[23]

J. RoaH. Urrutxua and J. Peláez, Stability and chaos in kustaanheimo-stiefel space induced by the hopf fibration, Monthly Notices of the Royal Astronomical Society, 459 (2016), 2444-2454. doi: 10.1093/mnras/stw780.

[24]

P. Saha, Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics, Mon. Not. R. Astron. Soc., 400 (2009), 228-231. doi: 10.1111/j.1365-2966.2009.15437.x.

[25]

J. Souriau, Sur la variete de Kepler, Convegno di Geometria Simplettica e Fisica Matematica, 14.

[26]

E. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, Springer, Berlin.

[27]

J. van der Meer, The Kepler system as a reduced 4d harmonic oscillator, Journal of Geometry and Physics, 92 (2015), 181-193. doi: 10.1016/j.geomphys.2015.02.016.

[28]

M. D. Vivarelli, The KS-transformation in hypercomplex form and the quantization of the negative-energy orbit manifold of the Kepler problem, Celestial mechanics, 36 (1985), 349-364. doi: 10.1007/BF01227489.

[29]

J. Waldvogel, Quaternions for regularizing celestial mechanics: The right way, Celest. Mech. Dynamical Astron., 102 (2008), 149-162. doi: 10.1007/s10569-008-9124-y.

[30]

L. Zhao, Kustaanheimo-Stiefel regularization and the quadrupolar conjugacy, Regul. Chaot. Dyn., 20 (2015), 19-36. doi: 10.1134/S1560354715010025.

Figure 1.  Commutative diagram. The map $\Gamma$ is the transformation from spherical to Cartesian coordinates and $\pi$ is the projection $(\rho, \phi, \theta, \psi, R, \Phi, \Theta, \Psi)\rightarrow (\rho, \phi, \theta, R, \Phi, \Theta)$
Figure 2.  Commutative diagram. The map $\Sigma$ is the transformation from polar to Cartesian coordinates and $\pi$ is the projection $(\rho, \lambda, \mu, \nu, R, \Lambda, M, N)\rightarrow (\rho, \mu, R, M)$
[1]

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 873-899. doi: 10.3934/dcds.2010.26.873

[2]

Bernard Ducomet, Alexander Zlotnik. On a regularization of the magnetic gas dynamics system of equations. Kinetic & Related Models, 2013, 6 (3) : 533-543. doi: 10.3934/krm.2013.6.533

[3]

Dmitry Treschev. Oscillator and thermostat. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1693-1712. doi: 10.3934/dcds.2010.28.1693

[4]

Zhaosheng Feng, Guangyue Gao, Jing Cui. Duffing--van der Pol--type oscillator system and its first integrals. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1377-1391. doi: 10.3934/cpaa.2011.10.1377

[5]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[6]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[7]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

[8]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[9]

Carlota Rebelo, Alexandre Simões. Periodic linear motions with multiple collisions in a forced Kepler type problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3955-3975. doi: 10.3934/dcds.2018172

[10]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

[11]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69

[12]

Andrea Bonfiglioli, Ermanno Lanconelli and Francesco Uguzzoni. Levi's parametrix for some sub-elliptic non-divergence form operators. Electronic Research Announcements, 2003, 9: 10-18.

[13]

János Karsai, John R. Graef. Attractivity properties of oscillator equations with superlinear damping. Conference Publications, 2005, 2005 (Special) : 497-504. doi: 10.3934/proc.2005.2005.497

[14]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[15]

Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775

[16]

Alexei Pokrovskii, Oleg Rasskazov, Daniela Visetti. Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 943-970. doi: 10.3934/dcdsb.2007.8.943

[17]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[18]

Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321

[19]

Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955

[20]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (23)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]