June 2018, 10(2): 217-250. doi: 10.3934/jgm.2018009

Double groupoids and the symplectic category

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, IL 60208-2730, USA

Received  October 2017 Revised  December 2017 Published  May 2018

We introduce the notion of a symplectic hopfoid, a "groupoid-like" object in the category of symplectic manifolds whose morphisms are given by canonical relations. Such groupoid-like objects arise when applying a version of the cotangent functor to the structure maps of a Lie groupoid. We show that such objects are in one-to-one correspondence with symplectic double groupoids, generalizing a result of Zakrzewski concerning symplectic double groups and Hopf algebra objects in the aforementioned category. The proof relies on a new realization of the core of a symplectic double groupoid as a symplectic quotient of the total space. The resulting constructions apply more generally to give a correspondence between double Lie groupoids and groupoid-like objects in the category of smooth manifolds and smooth relations, and we show that the cotangent functor relates the two constructions.

Citation: Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009
References:
[1]

R. Brown and K. C. H. Mackenzie, Determination of a double Lie groupoid by its core diagram, J. Pure Appl. Algebra, 80 (1992), 237-272. doi: 10.1016/0022-4049(92)90145-6.

[2]

A. Cattaneo and I. Contreras, Relational symplectic groupoids, Letters in Mathematical Physics, 105 (2015), 723-767. doi: 10.1007/s11005-015-0760-3.

[3]

A. CattaneoB. Dherin and A. Weinstein, Symplectic microgeometry I: Micromorphisms, Journal of Symplectic Geometry, 8 (2010), 205-223.

[4]

A. CosteP. Dazord and A. Weinstein, Groupoïdes symplectiques, Publications du Départment de mathématiques, Nouvelle Série. A, 2 (1987), 1-62.

[5]

R. Hepworth, Vector fields and flows on differential stacks, Theory and Applications of Categories, 22 (2009), 542-587.

[6]

D. Li-Bland and A. Weinstein, Selective categories and linear canonical relations, SIGMA, 10 (2014), Paper 100, 31 pp. doi: 10.3842/SIGMA.2014.100.

[7]

K. C. H. Mackenzie, On symplectic double groupoids and the duality of Poisson groupoids, International Journal of Mathematics, 10 (1999), 435-456. doi: 10.1142/S0129167X99000185.

[8]

R. A. Mehta and X. Tang, From double Lie groupoids to local Lie 2-groupoids, Bulletin of the Brazilian Mathematical Society, 42 (2011), 651-681. doi: 10.1007/s00574-011-0033-4.

[9]

I. Szymczak and S. Zakrzewski, Quantum deformations of the Heisenberg group obtained by geometric quantization, Journal of Geometry and Physics, 7 (1990), 553-569. doi: 10.1016/0393-0440(90)90006-O.

[10]

A. Weinstein, The volume of a differentiable stack, Lett Math Phys, 90 (2009), 353-371. doi: 10.1007/s11005-009-0343-2.

[11]

A. Weinstein, Coisotropic calculus and Poisson groupoids, Journal of the Mathematical Society of Japan, 40 (1988), 705-727. doi: 10.2969/jmsj/04040705.

[12]

A. Weinstein, A note on the Wehrheim-Woodward category, Journal of Geometric Mechanics, 3 (2011), 507-515. doi: 10.3934/jgm.2011.3.507.

[13]

A. Weinstein, The symplectic category, Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics, 905 (1982), Springer, Berlin-New York, 45–51.

[14]

S. Zakrzewski, Quantum and classical pseudogroups. Ⅰ. Union pseudogroups and their quantization, Comm. Math. Phys., 134 (1990), 347-370.

[15]

S. Zakrzewski, Quantum and Classical Pseudogroups. Ⅱ. Differential and symplectic pseudogroups, Comm. Math. Phys., 134 (1990), 371-395.

show all references

References:
[1]

R. Brown and K. C. H. Mackenzie, Determination of a double Lie groupoid by its core diagram, J. Pure Appl. Algebra, 80 (1992), 237-272. doi: 10.1016/0022-4049(92)90145-6.

[2]

A. Cattaneo and I. Contreras, Relational symplectic groupoids, Letters in Mathematical Physics, 105 (2015), 723-767. doi: 10.1007/s11005-015-0760-3.

[3]

A. CattaneoB. Dherin and A. Weinstein, Symplectic microgeometry I: Micromorphisms, Journal of Symplectic Geometry, 8 (2010), 205-223.

[4]

A. CosteP. Dazord and A. Weinstein, Groupoïdes symplectiques, Publications du Départment de mathématiques, Nouvelle Série. A, 2 (1987), 1-62.

[5]

R. Hepworth, Vector fields and flows on differential stacks, Theory and Applications of Categories, 22 (2009), 542-587.

[6]

D. Li-Bland and A. Weinstein, Selective categories and linear canonical relations, SIGMA, 10 (2014), Paper 100, 31 pp. doi: 10.3842/SIGMA.2014.100.

[7]

K. C. H. Mackenzie, On symplectic double groupoids and the duality of Poisson groupoids, International Journal of Mathematics, 10 (1999), 435-456. doi: 10.1142/S0129167X99000185.

[8]

R. A. Mehta and X. Tang, From double Lie groupoids to local Lie 2-groupoids, Bulletin of the Brazilian Mathematical Society, 42 (2011), 651-681. doi: 10.1007/s00574-011-0033-4.

[9]

I. Szymczak and S. Zakrzewski, Quantum deformations of the Heisenberg group obtained by geometric quantization, Journal of Geometry and Physics, 7 (1990), 553-569. doi: 10.1016/0393-0440(90)90006-O.

[10]

A. Weinstein, The volume of a differentiable stack, Lett Math Phys, 90 (2009), 353-371. doi: 10.1007/s11005-009-0343-2.

[11]

A. Weinstein, Coisotropic calculus and Poisson groupoids, Journal of the Mathematical Society of Japan, 40 (1988), 705-727. doi: 10.2969/jmsj/04040705.

[12]

A. Weinstein, A note on the Wehrheim-Woodward category, Journal of Geometric Mechanics, 3 (2011), 507-515. doi: 10.3934/jgm.2011.3.507.

[13]

A. Weinstein, The symplectic category, Differential Geometric Methods in Mathematical Physics, Lecture Notes in Mathematics, 905 (1982), Springer, Berlin-New York, 45–51.

[14]

S. Zakrzewski, Quantum and classical pseudogroups. Ⅰ. Union pseudogroups and their quantization, Comm. Math. Phys., 134 (1990), 347-370.

[15]

S. Zakrzewski, Quantum and Classical Pseudogroups. Ⅱ. Differential and symplectic pseudogroups, Comm. Math. Phys., 134 (1990), 371-395.

[1]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[2]

Lev Buhovski. The gap between near commutativity and almost commutativity in symplectic category. Electronic Research Announcements, 2013, 20: 71-76. doi: 10.3934/era.2013.20.71

[3]

Alan Weinstein. A note on the Wehrheim-Woodward category. Journal of Geometric Mechanics, 2011, 3 (4) : 507-515. doi: 10.3934/jgm.2011.3.507

[4]

Xavier Brusset, Per J. Agrell. Intrinsic impediments to category captainship collaboration. Journal of Industrial & Management Optimization, 2017, 13 (1) : 113-133. doi: 10.3934/jimo.2016007

[5]

Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53.

[6]

Nikita Selinger. Topological characterization of canonical Thurston obstructions. Journal of Modern Dynamics, 2013, 7 (1) : 99-117. doi: 10.3934/jmd.2013.7.99

[7]

Peter Scott and Gadde A. Swarup. Regular neighbourhoods and canonical decompositions for groups. Electronic Research Announcements, 2002, 8: 20-28.

[8]

Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069

[9]

Hideyuki Suzuki, Shunji Ito, Kazuyuki Aihara. Double rotations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 515-532. doi: 10.3934/dcds.2005.13.515

[10]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[11]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[12]

Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253

[13]

Yubo Yuan. Canonical duality solution for alternating support vector machine. Journal of Industrial & Management Optimization, 2012, 8 (3) : 611-621. doi: 10.3934/jimo.2012.8.611

[14]

Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413

[15]

Evelyn Sander. Hyperbolic sets for noninvertible maps and relations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 339-357. doi: 10.3934/dcds.1999.5.339

[16]

Artur Babiarz, Adam Czornik, Michał Niezabitowski, Evgenij Barabanov, Aliaksei Vaidzelevich, Alexander Konyukh. Relations between Bohl and general exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5319-5335. doi: 10.3934/dcds.2017231

[17]

Christophe Cheverry, Adrien Fontaine. Dispersion relations in cold magnetized plasmas. Kinetic & Related Models, 2017, 10 (2) : 373-421. doi: 10.3934/krm.2017015

[18]

Patrik Nystedt, Johan Öinert. Simple skew category algebras associated with minimal partially defined dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4157-4171. doi: 10.3934/dcds.2013.33.4157

[19]

Michael Hutchings, Frank Morgan, Manuel Ritore and Antonio Ros. Proof of the double bubble conjecture. Electronic Research Announcements, 2000, 6: 45-49.

[20]

Joel Hass, Michael Hutchings and Roger Schlafly. The double bubble conjecture. Electronic Research Announcements, 1995, 1: 98-102.

2016 Impact Factor: 0.857

Article outline

[Back to Top]