June 2018, 10(2): 209-215. doi: 10.3934/jgm.2018008

A note on the normalization of generating functions

Previnet S.p.A., Via E. Forlanini, 24, Preganziol (TV), Italy

Received  December 2016 Revised  December 2017 Published  May 2018

In the present note, I will propose some insights on the normalization of generating functions for Lagrangian submanifolds. From the literature (see, for example [4], [6], [7], [3] and [1]), it is clear that a problem exists concerning the nonuniqueness of generating functions and, in particular, of the generating functions quadratic at infinity (GFQI). This problem can be avoided introducing a normalization on the whole set of generating functions that will allow us to

(ⅰ) choose an unique GFQI for Lagrangian submanifolds of the form $\varphi(L)$, where $L$ is a Lagrangian submanifold and $\varphi$ is an Hamiltonian isotopy;

(ⅱ) compare the critical values $c(α, S_1)$ and $c(α, S_2)$ of two GFQI generating the submanifolds, $\varphi_1(L)$ and $\varphi_2(L)$, where $\varphi_1$ and $\varphi_2$ are Hamiltonian isotopies relative to two Hamiltonians $H_1$ and $H_2$, respectively.

Citation: Simone Vazzoler. A note on the normalization of generating functions. Journal of Geometric Mechanics, 2018, 10 (2) : 209-215. doi: 10.3934/jgm.2018008
References:
[1]

F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Mathematical Journal, 144 (2008), 235-284. doi: 10.1215/00127094-2008-036.

[2]

F. Cardin, Elementary Symplectic Topology and Mechanics, Springer, 2015. doi: 10.1007/978-3-319-11026-4.

[3]

A. Monzner, N. Vichery and F. Zapolsky, Partial quasi-morphisms and quasi-states on cotangent bundles, and symplectic homogenization, J. Mod. Dyn., 6 (2012), 205-249, arXiv: 1111.0287. doi: 10.3934/jmd.2012.6.205.

[4]

D. Théret, A complete proof of Viterbo's uniqueness theorem on generating functions, Topology and its Applications, 96 (1999), 249-266. doi: 10.1016/S0166-8641(98)00049-2.

[5]

C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710. doi: 10.1007/BF01444643.

[6]

C. Viterbo, Symplectic topology and Hamilton-Jacobi equations, Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 439-459, NATO Sci. Ser. Ⅱ Math. Phys. Chem., 217, Springer, Dordrecht, 2006. doi: 10.1007/1-4020-4266-3_10.

[7]

C. Viterbo, Symplectic Homogenization, 2014, arXiv: 0801.0206v3.

show all references

References:
[1]

F. Cardin and C. Viterbo, Commuting Hamiltonians and Hamilton-Jacobi multi-time equations, Duke Mathematical Journal, 144 (2008), 235-284. doi: 10.1215/00127094-2008-036.

[2]

F. Cardin, Elementary Symplectic Topology and Mechanics, Springer, 2015. doi: 10.1007/978-3-319-11026-4.

[3]

A. Monzner, N. Vichery and F. Zapolsky, Partial quasi-morphisms and quasi-states on cotangent bundles, and symplectic homogenization, J. Mod. Dyn., 6 (2012), 205-249, arXiv: 1111.0287. doi: 10.3934/jmd.2012.6.205.

[4]

D. Théret, A complete proof of Viterbo's uniqueness theorem on generating functions, Topology and its Applications, 96 (1999), 249-266. doi: 10.1016/S0166-8641(98)00049-2.

[5]

C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann., 292 (1992), 685-710. doi: 10.1007/BF01444643.

[6]

C. Viterbo, Symplectic topology and Hamilton-Jacobi equations, Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 439-459, NATO Sci. Ser. Ⅱ Math. Phys. Chem., 217, Springer, Dordrecht, 2006. doi: 10.1007/1-4020-4266-3_10.

[7]

C. Viterbo, Symplectic Homogenization, 2014, arXiv: 0801.0206v3.

Figure 1.  The two paths $\alpha+\beta$ and $\gamma+\delta$
[1]

Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811

[2]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[3]

Ely Kerman. Displacement energy of coisotropic submanifolds and Hofer's geometry. Journal of Modern Dynamics, 2008, 2 (3) : 471-497. doi: 10.3934/jmd.2008.2.471

[4]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[5]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[6]

Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229

[7]

Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1

[8]

Fiammetta Battaglia and Elisa Prato. Nonrational, nonsimple convex polytopes in symplectic geometry. Electronic Research Announcements, 2002, 8: 29-34.

[9]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[10]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[11]

Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503

[12]

Dae San Kim. Infinite families of recursive formulas generating power moments of ternary Kloosterman sums with square arguments arising from symplectic groups. Advances in Mathematics of Communications, 2009, 3 (2) : 167-178. doi: 10.3934/amc.2009.3.167

[13]

Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009

[14]

Ana Paula S. Dias, Paul C. Matthews, Ana Rodrigues. Generating functions for Hopf bifurcation with $ S_n$-symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 823-842. doi: 10.3934/dcds.2009.25.823

[15]

Qian Liu, Xinmin Yang, Heung Wing Joseph Lee. On saddle points of a class of augmented lagrangian functions. Journal of Industrial & Management Optimization, 2007, 3 (4) : 693-700. doi: 10.3934/jimo.2007.3.693

[16]

Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257

[17]

Shengbing Deng, Fethi Mahmoudi, Monica Musso. Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3035-3076. doi: 10.3934/dcds.2016.36.3035

[18]

Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253

[19]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[20]

Julia Piantadosi, Phil Howlett, Jonathan Borwein, John Henstridge. Maximum entropy methods for generating simulated rainfall. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 233-256. doi: 10.3934/naco.2012.2.233

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (22)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]