June 2018, 10(2): 173-187. doi: 10.3934/jgm.2018006

Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems

Mathematical Institute SANU, Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11000 Belgrade, Serbia

Received  September 2016 Revised  March 2018 Published  May 2018

We consider Noether symmetries of the equations defined by the sections of characteristic line bundles of nondegenerate 1-forms and of the associated perturbed systems. It appears that this framework can be used for time-dependent systems with constraints and nonconservative forces, allowing a quite simple and transparent formulation of the momentum equation and the Noether theorem in their general forms.

Citation: Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006
References:
[1]

V. I. Arnold, V. V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems, Ⅲ. Third Edition. Encyclopaedia Math. Sci. 3. Springer, Berlin, 2006.

[2]

P. Balseiro and N. Sansonetto, A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries, SIGMA, 12 (2016), Paper No. 018, 14 pages, arXiv: 1510.08314. doi: 10.3842/SIGMA.2016.018.

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308. doi: 10.1016/0034-4877(96)84069-9.

[4]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[5]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in nonholonomic systems, Dynamical Systems, 24 (2009), 187-222. doi: 10.1080/14689360802609344.

[6]

A. V. Borisov and I. S. Mamaev, Symmetries and reduction in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 553–604 doi: 10.1134/S1560354715050044.

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The jacobi integral in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 383-400. doi: 10.1134/S1560354715030107.

[8]

F. Cantrjin and W. Sarlet, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494. doi: 10.1137/1023098.

[9]

F. CantrjnM. de LeonM. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys, 42 (1998), 25-45. doi: 10.1016/S0034-4877(98)80003-7.

[10]

M. Crampin, Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754. doi: 10.1007/BF01807231.

[11]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods. Mod. Phys., 8 (2011), 897-923, arXiv: 1101.3153. doi: 10.1142/S0219887811005452.

[12]

Dj. S. Djukić, Conservation laws in classical mechanics for quasi-coordinates, Arch. Ration. Mech. Anal., 56 (1974), 79-98. doi: 10.1007/BF00279822.

[13]

Dj. S. Djukić and B. D. Vujanović, Noether's theory in the classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27. doi: 10.1007/BF01177666.

[14]

F. FassòA. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Regul. Chaotic Dyn., 12 (2007), 579-588. doi: 10.1134/S1560354707060019.

[15]

F. FassòA. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Reports in Mathematical Physics, 62 (2008), 345-367. doi: 10.1016/S0034-4877(09)00005-6.

[16]

F. Fassò and N. Sansonetto, Conservation of energy and momenta in nonholonomic systems with affine constraints, Regular and Chaotic Dynamics, 20 (2015), 449-462, arXiv: 1505.01172. doi: 10.1134/S1560354715040048.

[17]

F. Fassò and N. Sansonetto, Conservation of 'moving' energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., 26 (2016), 519-544, arXiv: 1503.06661. doi: 10.1007/s00332-015-9283-4.

[18]

E. Fiorani and A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations, J. Geom. Phys., 88 (2015), 56-75, arXiv: 1411.6097. doi: 10.1016/j.geomphys.2014.11.005.

[19]

G. Giachetta, First integrals of non-holonomic systems and their generators, J. Phys. A: Math. Gen., 33 (2000), 5369-5389. doi: 10.1088/0305-4470/33/30/308.

[20]

S. Hochgerner and L. C. Garcia-Naranjo, G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball, J. Geom. Mech., 1 (2009), 35-53, arXiv: 0810.5454. doi: 10.3934/jgm.2009.1.35.

[21]

B. Jovanović, Hamiltonization and integrability of the Chaplygin sphere in Rn, J. Nonlinear. Sci., 20 (2010), 569-593, arXiv: 0902.4397. doi: 10.1007/s00332-010-9067-9.

[22]

B. Jovanović, Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theoretical and Applied Mechanics, 43 (2016), 255-273, arXiv: 1608.07788.

[23]

B. Jovanović, Invariant measures of modified LR and L+R systems, Regular and Chaotic Dynamics, 20 (2015), 542-552, arXiv: 1508.04913. doi: 10.1134/S1560354715050032.

[24]

Y. Kosmann-Schwarzbach, The Noether Theorems, Invariance and Conservation Laws in the Twentieth Century, Springer, New York, 2011. doi: 10.1007/978-0-387-87868-3.

[25]

V. V. Kozlov and N. N. Kolesnikov, On theorems of dynamics, (Russian), Prikl. Mat. Mekh., 42 (1978), 28-33.

[26]

P. Libermann and C. Marle, Symplectic Geometry, Analytical Mechanics, Riedel, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.

[27]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, In Classical and Quantum Integrability (Warsaw, 2001), 223-242, Banach Center Publ. 59, Polish Acad. Sci. Warsaw, 2003. doi: 10.4064/bc59-0-12.

[28]

Dj. Mušicki, Noether's theorem for nonconservative systems in quasicoordinates, Theoretical and Applied Mechanics, 43 (2016), 1-17.

[29]

E. Noether, Invariante variationsprobleme, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, (1918), 235-257.

[30]

S. Simić, On Noetherian approach to integrable cases of the motion of heavy top, Bull. Cl. Sci. Math. Nat. Sci. Math., 25 (2000), 133-156.

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Dynamical Systems, Ⅲ. Third Edition. Encyclopaedia Math. Sci. 3. Springer, Berlin, 2006.

[2]

P. Balseiro and N. Sansonetto, A Geometric Characterization of Certain First Integrals for Nonholonomic Systems with Symmetries, SIGMA, 12 (2016), Paper No. 018, 14 pages, arXiv: 1510.08314. doi: 10.3842/SIGMA.2016.018.

[3]

L. BatesH. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308. doi: 10.1016/0034-4877(96)84069-9.

[4]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[5]

A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in nonholonomic systems, Dynamical Systems, 24 (2009), 187-222. doi: 10.1080/14689360802609344.

[6]

A. V. Borisov and I. S. Mamaev, Symmetries and reduction in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 553–604 doi: 10.1134/S1560354715050044.

[7]

A. V. BorisovI. S. Mamaev and I. A. Bizyaev, The jacobi integral in nonholonomic mechanics, Regular and Chaotic Dynamics, 20 (2015), 383-400. doi: 10.1134/S1560354715030107.

[8]

F. Cantrjin and W. Sarlet, Generalizations of Noether's theorem in classical mechanics, SIAM Review, 23 (1981), 467-494. doi: 10.1137/1023098.

[9]

F. CantrjnM. de LeonM. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys, 42 (1998), 25-45. doi: 10.1016/S0034-4877(98)80003-7.

[10]

M. Crampin, Constants of the motion in Lagrangian mechanics, Int. J. Theor. Phys., 16 (1977), 741-754. doi: 10.1007/BF01807231.

[11]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods. Mod. Phys., 8 (2011), 897-923, arXiv: 1101.3153. doi: 10.1142/S0219887811005452.

[12]

Dj. S. Djukić, Conservation laws in classical mechanics for quasi-coordinates, Arch. Ration. Mech. Anal., 56 (1974), 79-98. doi: 10.1007/BF00279822.

[13]

Dj. S. Djukić and B. D. Vujanović, Noether's theory in the classical nonconservative mechanics, Acta Mech., 23 (1975), 17-27. doi: 10.1007/BF01177666.

[14]

F. FassòA. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Regul. Chaotic Dyn., 12 (2007), 579-588. doi: 10.1134/S1560354707060019.

[15]

F. FassòA. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Reports in Mathematical Physics, 62 (2008), 345-367. doi: 10.1016/S0034-4877(09)00005-6.

[16]

F. Fassò and N. Sansonetto, Conservation of energy and momenta in nonholonomic systems with affine constraints, Regular and Chaotic Dynamics, 20 (2015), 449-462, arXiv: 1505.01172. doi: 10.1134/S1560354715040048.

[17]

F. Fassò and N. Sansonetto, Conservation of 'moving' energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces, J. Nonlinear Sci., 26 (2016), 519-544, arXiv: 1503.06661. doi: 10.1007/s00332-015-9283-4.

[18]

E. Fiorani and A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations, J. Geom. Phys., 88 (2015), 56-75, arXiv: 1411.6097. doi: 10.1016/j.geomphys.2014.11.005.

[19]

G. Giachetta, First integrals of non-holonomic systems and their generators, J. Phys. A: Math. Gen., 33 (2000), 5369-5389. doi: 10.1088/0305-4470/33/30/308.

[20]

S. Hochgerner and L. C. Garcia-Naranjo, G-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball, J. Geom. Mech., 1 (2009), 35-53, arXiv: 0810.5454. doi: 10.3934/jgm.2009.1.35.

[21]

B. Jovanović, Hamiltonization and integrability of the Chaplygin sphere in Rn, J. Nonlinear. Sci., 20 (2010), 569-593, arXiv: 0902.4397. doi: 10.1007/s00332-010-9067-9.

[22]

B. Jovanović, Noether symmetries and integrability in Hamiltonian time-dependent mechanics, Theoretical and Applied Mechanics, 43 (2016), 255-273, arXiv: 1608.07788.

[23]

B. Jovanović, Invariant measures of modified LR and L+R systems, Regular and Chaotic Dynamics, 20 (2015), 542-552, arXiv: 1508.04913. doi: 10.1134/S1560354715050032.

[24]

Y. Kosmann-Schwarzbach, The Noether Theorems, Invariance and Conservation Laws in the Twentieth Century, Springer, New York, 2011. doi: 10.1007/978-0-387-87868-3.

[25]

V. V. Kozlov and N. N. Kolesnikov, On theorems of dynamics, (Russian), Prikl. Mat. Mekh., 42 (1978), 28-33.

[26]

P. Libermann and C. Marle, Symplectic Geometry, Analytical Mechanics, Riedel, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.

[27]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, In Classical and Quantum Integrability (Warsaw, 2001), 223-242, Banach Center Publ. 59, Polish Acad. Sci. Warsaw, 2003. doi: 10.4064/bc59-0-12.

[28]

Dj. Mušicki, Noether's theorem for nonconservative systems in quasicoordinates, Theoretical and Applied Mechanics, 43 (2016), 1-17.

[29]

E. Noether, Invariante variationsprobleme, Nachrichten von der Königlich Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, (1918), 235-257.

[30]

S. Simić, On Noetherian approach to integrable cases of the motion of heavy top, Bull. Cl. Sci. Math. Nat. Sci. Math., 25 (2000), 133-156.

[1]

Stephen Anco, Maria Rosa, Maria Luz Gandarias. Conservation laws and symmetries of time-dependent generalized KdV equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 607-615. doi: 10.3934/dcdss.2018035

[2]

Masahiro Kubo, Noriaki Yamazaki. Elliptic-parabolic variational inequalities with time-dependent constraints. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 335-359. doi: 10.3934/dcds.2007.19.335

[3]

Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141

[4]

Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969

[5]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[6]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[7]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[8]

Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041

[9]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[10]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[11]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[12]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[13]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[14]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks & Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[15]

Giuseppe Maria Coclite, Mauro Garavello, Laura V. Spinolo. Optimal strategies for a time-dependent harvesting problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 865-900. doi: 10.3934/dcdss.2018053

[16]

Olivier Brahic. Infinitesimal gauge symmetries of closed forms. Journal of Geometric Mechanics, 2011, 3 (3) : 277-312. doi: 10.3934/jgm.2011.3.277

[17]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[18]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Variational problems of Herglotz type with time delay: DuBois--Reymond condition and Noether's first theorem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4593-4610. doi: 10.3934/dcds.2015.35.4593

[19]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[20]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

2016 Impact Factor: 0.857

Article outline

[Back to Top]