June 2018, 10(2): 139-172. doi: 10.3934/jgm.2018005

A note on time-optimal paths on perturbed spheroid

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Prof. St. Lojasiewicza 6, 30 - 348 Kraków, Poland

2. 

Gdynia Maritime University, Faculty of Navigation, Al. Jana Pawla Ⅱ 3, 81-345 Gdynia, Poland

Received  January 2016 Revised  March 2018 Published  May 2018

Fund Project: The author is supported by a grant from the Polish National Science Center under research project number 2013/09/N/ST10/02537

We consider Zermelo's problem of navigation on a spheroid in the presence of space-dependent perturbation $W$ determined by a weak velocity vector field, $|W|_h<1$. The approach is purely geometric with application of Finsler metric of Randers type making use of the corresponding optimal control represented by a time-minimal ship's heading $\varphi(t)$ (a steering direction). A detailed exposition including investigation of the navigational quantities is provided under a rotational vector field. This demonstrates, in particular, a preservation of the optimal control $\varphi(t)$ of the time-efficient trajectories in the presence and absence of acting perturbation. Such navigational treatment of the problem leads to some simple relations between the background Riemannian and the resulting Finsler geodesics, thought of the deformed Riemannian paths. Also, we show some connections with Clairaut's relation and a collision problem. The study is illustrated with an example considered on an oblate ellipsoid.

Citation: Piotr Kopacz. A note on time-optimal paths on perturbed spheroid. Journal of Geometric Mechanics, 2018, 10 (2) : 139-172. doi: 10.3934/jgm.2018005
References:
[1]

The International Maritime Organization (IMO), COLREG: Convention on the International Regulations for Preventing Collisions at Sea, London, United Kingdom, 2004.

[2]

N. Aldea and P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds under mild wind, Diff. Geom. Appl., 54 (2017), 325-343. doi: 10.1016/j.difgeo.2017.05.007.

[3]

N. Aldea and P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds with a critical wind, Results Math., 72 (2017), 2165-2180. doi: 10.1007/s00025-017-0757-6.

[4]

K. J. Arrow, On the use of winds in flight planning, J. Meteor., 6 (1949), 150-159.

[5]

D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in A sampler of Riemann-Finsler geometry (eds. D. Bao et al.), Math. Sci. Res. Inst. Publ., 50 (2004), Cambridge Univ. Press, 197-259.

[6]

D. BaoC. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435.

[7]

D. C. Brody, G. W. Gibbons and D. M. Meier, Time-optimal navigation through quantum wind, New J. Phys., 17 (2015), 033048, 8pp. doi: 10.1088/1367-2630/17/3/033048.

[8]

D. C. BrodyG. W. Gibbons and D. M. Meier, A Riemannian approach to Randers geodesics, J. Geom. Phys., 106 (2016), 98-101. doi: 10.1016/j.geomphys.2016.03.019.

[9]

D. C. Brody and D. M. Meier, Solution to the quantum Zermelo navigation problem, Phys. Rev. Lett., 114 (2015), 100502.

[10]

E. Caponio, M. A. Javaloyes and M. Sànchez, Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes, preprint, arXiv: 1407.5494.

[11]

C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, San Francisco-London-Amsterdam, 1965.

[12]

S.-S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai tracts in mathematics, World Scientific, River Edge (N. J.), London, Singapore, 2005. doi: 10.1142/5263.

[13]

M. A. Earle, Sphere to spheroid comparisons, J. Navigation, 59 (2006), 491-496.

[14]

A. de Mira Fernandes, Sul problema brachistocrono di Zermelo, Rendiconti della R. Acc. dei Lincei, XV (1932), 47-52.

[15]

C. A. R. Herdeiro, Mira Fernandes and a generalised Zermelo problem: Purely geometric formulations, Bol. Soc. Port. Mat., 2010, Special Issue. Publication date estimated, 179-191.

[16]

M. R. Jardin, Toward Real-Time en Route Air Traffic Control Optimization, Ph. D thesis, Stanford University, 2003.

[17]

A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Math. USSR Izv., 37 (1973), 539-576.

[18]

P. Kopacz, On generalization of Zermelo navigation problem on Riemannian manifolds, preprint, arXiv: 1604.06487.

[19]

P. Kopacz, Application of planar Randers geodesics with river-type perturbation in search models, Appl. Math. Model., 49 (2017), 531-553. doi: 10.1016/j.apm.2017.05.007.

[20]

P. Kopacz, A note on generalization of Zermelo navigation problem on Riemannian manifolds with strong perturbation, An. Sti. U. Ovid. Co.-Mat., 25 (2017), 107-123.

[21]

P. Kopacz, Application of codimension one foliation in Zermelo's problem on Riemannian manifolds, Diff. Geom. Appl., 35 (2014), 334-349. doi: 10.1016/j.difgeo.2014.04.007.

[22]

P. Kopacz, Proposal on a Riemannian approach to path modeling in a navigational decision support system, in Activities of Transport Telematics. TST 2013. Communications in Computer and Information Science 395 (eds. J. Mikulski), Springer, Berlin, Heidelberg, (2013), 294-302.

[23]

T. Levi-Civita, Über Zermelo's Luftfahrtproblem, ZAMM-Z. Angew. Math. Me., 11 (1931), 314-322.

[24]

B. Manià, Sopra un problema di navigazione di Zermelo, Math. Ann., 133 (1937), 584-599. doi: 10.1007/BF01571651.

[25]

A. Pallikaris and G. Latsas, New Algorithm for Great Elliptic Sailing (GES), J. Navigation, 62 (2012), 493-507.

[26]

A. Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag, London, 2010. doi: 10.1007/978-1-84882-891-9.

[27]

C. Robles, Geodesics in Randers spaces of constant curvature, T. Am. Math. Soc., 359 (2007), 1633-1651. doi: 10.1090/S0002-9947-06-04051-7.

[28]

B. Russell and S. Stepney, Zermelo navigation in the quantum brachistochrone, J. Phys. A - Math. Theor., 48 (2015), 115303, 29pp. doi: 10.1088/1751-8113/48/11/115303.

[29]

Z. Shen, Finsler Metrics with ${\bf{K}} = 0$ and ${\bf{S}} = 0$, Can. J. Math., 55 (2003), 112-132. doi: 10.4153/CJM-2003-005-6.

[30]

W.-K. TsengM. A. Earle and J.-L. Guo, Direct and inverse solutions with geodetic latitude in terms of longitude for rhumb line sailing, J. Navigation, 65 (2012), 549-559.

[31]

A. Weintrit and P. Kopacz, Computational algorithms implemented in marine navigation electronic systems, in Telematics in the Transport Environment. TST 2012. Communications in Computer and Information Science 329 (eds. J. Mikulski), Springer, Berlin, Heidelberg, (2012), 148-158.

[32]

A. Weintrit and P. Kopacz, A Novel Approach to Loxodrome (Rhumb Line), Orthodrome (Great Circle) and Geodesic Line in ECDIS and Navigation in General, in Methods and Algorithms in Navigation (eds. A. Weintrit and T. Neumann), CRC Press, (2011), 123-132.

[33]

R. Yoshikawa and S. V. Sabau, Kropina metrics and Zermelo navigation on Riemannian manifolds, Geom. Dedicata, 171 (2014), 119-148. doi: 10.1007/s10711-013-9892-8.

[34]

E. Zermelo, Über die Navigation in der Luft als Problem der Variationsrechnung, Jahresber. Deutsch. Math.-Verein., 89 (1930), 44-48.

[35]

E. Zermelo, Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung, ZAMM-Z. Angew. Math. Me., 11 (1931), 114-124.

[36]

W. Ziller, Geometry of the Katok examples, Ergodic Theory Dyn. Syst., 3 (1983), 135-157. doi: 10.1017/S0143385700001851.

show all references

References:
[1]

The International Maritime Organization (IMO), COLREG: Convention on the International Regulations for Preventing Collisions at Sea, London, United Kingdom, 2004.

[2]

N. Aldea and P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds under mild wind, Diff. Geom. Appl., 54 (2017), 325-343. doi: 10.1016/j.difgeo.2017.05.007.

[3]

N. Aldea and P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds with a critical wind, Results Math., 72 (2017), 2165-2180. doi: 10.1007/s00025-017-0757-6.

[4]

K. J. Arrow, On the use of winds in flight planning, J. Meteor., 6 (1949), 150-159.

[5]

D. Bao and C. Robles, Ricci and flag curvatures in Finsler geometry, in A sampler of Riemann-Finsler geometry (eds. D. Bao et al.), Math. Sci. Res. Inst. Publ., 50 (2004), Cambridge Univ. Press, 197-259.

[6]

D. BaoC. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Diff. Geom., 66 (2004), 377-435.

[7]

D. C. Brody, G. W. Gibbons and D. M. Meier, Time-optimal navigation through quantum wind, New J. Phys., 17 (2015), 033048, 8pp. doi: 10.1088/1367-2630/17/3/033048.

[8]

D. C. BrodyG. W. Gibbons and D. M. Meier, A Riemannian approach to Randers geodesics, J. Geom. Phys., 106 (2016), 98-101. doi: 10.1016/j.geomphys.2016.03.019.

[9]

D. C. Brody and D. M. Meier, Solution to the quantum Zermelo navigation problem, Phys. Rev. Lett., 114 (2015), 100502.

[10]

E. Caponio, M. A. Javaloyes and M. Sànchez, Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes, preprint, arXiv: 1407.5494.

[11]

C. Carathéodory, Calculus of Variations and Partial Differential Equations of the First Order, San Francisco-London-Amsterdam, 1965.

[12]

S.-S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai tracts in mathematics, World Scientific, River Edge (N. J.), London, Singapore, 2005. doi: 10.1142/5263.

[13]

M. A. Earle, Sphere to spheroid comparisons, J. Navigation, 59 (2006), 491-496.

[14]

A. de Mira Fernandes, Sul problema brachistocrono di Zermelo, Rendiconti della R. Acc. dei Lincei, XV (1932), 47-52.

[15]

C. A. R. Herdeiro, Mira Fernandes and a generalised Zermelo problem: Purely geometric formulations, Bol. Soc. Port. Mat., 2010, Special Issue. Publication date estimated, 179-191.

[16]

M. R. Jardin, Toward Real-Time en Route Air Traffic Control Optimization, Ph. D thesis, Stanford University, 2003.

[17]

A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Math. USSR Izv., 37 (1973), 539-576.

[18]

P. Kopacz, On generalization of Zermelo navigation problem on Riemannian manifolds, preprint, arXiv: 1604.06487.

[19]

P. Kopacz, Application of planar Randers geodesics with river-type perturbation in search models, Appl. Math. Model., 49 (2017), 531-553. doi: 10.1016/j.apm.2017.05.007.

[20]

P. Kopacz, A note on generalization of Zermelo navigation problem on Riemannian manifolds with strong perturbation, An. Sti. U. Ovid. Co.-Mat., 25 (2017), 107-123.

[21]

P. Kopacz, Application of codimension one foliation in Zermelo's problem on Riemannian manifolds, Diff. Geom. Appl., 35 (2014), 334-349. doi: 10.1016/j.difgeo.2014.04.007.

[22]

P. Kopacz, Proposal on a Riemannian approach to path modeling in a navigational decision support system, in Activities of Transport Telematics. TST 2013. Communications in Computer and Information Science 395 (eds. J. Mikulski), Springer, Berlin, Heidelberg, (2013), 294-302.

[23]

T. Levi-Civita, Über Zermelo's Luftfahrtproblem, ZAMM-Z. Angew. Math. Me., 11 (1931), 314-322.

[24]

B. Manià, Sopra un problema di navigazione di Zermelo, Math. Ann., 133 (1937), 584-599. doi: 10.1007/BF01571651.

[25]

A. Pallikaris and G. Latsas, New Algorithm for Great Elliptic Sailing (GES), J. Navigation, 62 (2012), 493-507.

[26]

A. Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer-Verlag, London, 2010. doi: 10.1007/978-1-84882-891-9.

[27]

C. Robles, Geodesics in Randers spaces of constant curvature, T. Am. Math. Soc., 359 (2007), 1633-1651. doi: 10.1090/S0002-9947-06-04051-7.

[28]

B. Russell and S. Stepney, Zermelo navigation in the quantum brachistochrone, J. Phys. A - Math. Theor., 48 (2015), 115303, 29pp. doi: 10.1088/1751-8113/48/11/115303.

[29]

Z. Shen, Finsler Metrics with ${\bf{K}} = 0$ and ${\bf{S}} = 0$, Can. J. Math., 55 (2003), 112-132. doi: 10.4153/CJM-2003-005-6.

[30]

W.-K. TsengM. A. Earle and J.-L. Guo, Direct and inverse solutions with geodetic latitude in terms of longitude for rhumb line sailing, J. Navigation, 65 (2012), 549-559.

[31]

A. Weintrit and P. Kopacz, Computational algorithms implemented in marine navigation electronic systems, in Telematics in the Transport Environment. TST 2012. Communications in Computer and Information Science 329 (eds. J. Mikulski), Springer, Berlin, Heidelberg, (2012), 148-158.

[32]

A. Weintrit and P. Kopacz, A Novel Approach to Loxodrome (Rhumb Line), Orthodrome (Great Circle) and Geodesic Line in ECDIS and Navigation in General, in Methods and Algorithms in Navigation (eds. A. Weintrit and T. Neumann), CRC Press, (2011), 123-132.

[33]

R. Yoshikawa and S. V. Sabau, Kropina metrics and Zermelo navigation on Riemannian manifolds, Geom. Dedicata, 171 (2014), 119-148. doi: 10.1007/s10711-013-9892-8.

[34]

E. Zermelo, Über die Navigation in der Luft als Problem der Variationsrechnung, Jahresber. Deutsch. Math.-Verein., 89 (1930), 44-48.

[35]

E. Zermelo, Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung, ZAMM-Z. Angew. Math. Me., 11 (1931), 114-124.

[36]

W. Ziller, Geometry of the Katok examples, Ergodic Theory Dyn. Syst., 3 (1983), 135-157. doi: 10.1017/S0143385700001851.

Figure 1.  The Riemannian geodesics on the spheroid $\Sigma^2$ with $a: = \frac{3}{4}$ starting from $(0, \frac{\pi}{2})$, with the increments $\Delta \varphi_0 = \frac{\pi}{8}$. On the right, the corresponding solutions $x(t), y(t), z(t)$ for the point $(1, 0, 0)\in\mathbb{R}^3$; $t\leq3$
Figure 2.  The contour plot and the graph of the norm $|W|_h$ in the case of the infinitesimal rotation as the acting mild perturbation, with $c: = \frac{5}{7}$
Figure 28.  The geodesics of the new Riemannian metric $\alpha$ starting from $(0, \frac{\pi}{2})$, with the increments $\Delta \varphi_0 = \frac{\pi}{8}$ (16 curves); $t\leq3$
Figure 3.  The time-efficient paths on the spheroid with $a: = \frac{3}{4}$ starting from $(0, \frac{\pi}{2})$, with the increments $\Delta \varphi_0 = \frac{\pi}{8}$, $t\leq3$ (left) and divided into time segments with $t\in[0, 1) \text{- red}, t\in[1, 2) \text{- blue}, t\in[2, 3] \text{ - purple}$. Right: "top view"
Figure 4.  The transpolar (blue) and circumpolar (red) Randers geodesics starting from $(\phi_0, \theta_0) = (0, \frac{\pi}{2})$ in the presence of the rotational perturbation, with $c: = \frac{5}{7}$, the increments $\Delta \varphi_0 = \frac{\pi}{4}$, $t\leq50$. Right: "top" view
Figure 5.  The $F$-isochrones in the presence of the perturbing infinitesimal rotation, with $c: = \frac{5}{7}$ for $t = 1$ (blue), $t = 2$ (red), $t = 3$ (purple), $t = 4$ (magenta) and the starting point in $(\phi_0, \theta_0): = (0, \frac{\pi}{2})$
Figure 6.  The $F$-isochrones on the spheroid $\Sigma^2$ under the perturbing infinitesimal rotation (7), with $c: = \frac{5}{7}$, $t = \left\{1\ \text{(blue)}, 2\ \text{(red)}, 3 \ \text{(purple)}, 4\ \text{(magenta)}\right\}$ and the starting point $(0, \frac{\pi}{2})$. Right: "top" view
Figure 7.  Comparing the solutions $x(t)$ - blue, $y(t)$ - red, $z(t)$ - black in the absence (dashed) and the presence (solid) of the wind (7), with $\Delta \varphi_0 = \frac{\pi}{8}$ and the starting point $(1, 0, 0)\in\mathbb{R}^3$; $t\leq3$
Figure 8.  The comparison of the perturbed (red) and unperturbed (blue) time-efficient paths starting from $(0, \frac{\pi}{2})$, with $\Delta \varphi_0 = \frac{\pi}{4}$, $t\leq1$ (left) and $\Delta \varphi_0 = \frac{\pi}{8}$, $t\leq3$ (middle and "top" view on the right)
Figure 9.  The corresponding background $h$-Riemannian (blue), new $\alpha$-Riemannian (green) and $F$-Randers (red) geodesics starting from $(0, \frac{\pi}{2})$, with $\Delta \varphi_0 = \frac{\pi}{4}$, $t\leq1$ (left) and with $\Delta \varphi_0 = \frac{\pi}{8}$, $t\leq3$ (middle: "side" view and right: "top" view)
Figure 15.  The initial resulting speed $|{\bf{v}}_0|_h$ (black) as the function of the initial control angle $\varphi_0\in[0, 2\pi )$
Figure 16.  The linear (on the left) and angular speeds (on the right) as the functions of time, in the absence (dashed) and in the presence (solid) of the perturbation (7); the resulting linear speed is shown in black; $t\leq7$
Figure 20.  The polar plot of the solutions $\phi(t)$ (blue), $\theta(t)$ (red) in the absence (dashed) and presence (solid) of the perturbation (7); $t\leq20$
Figure 21.  The distance (Euclidean) between the "Riemannian ship" and "Finslerian ship", with $t\leq 15$ (left) and $t\leq 50$ (right). The red horizontal line indicates collision and the green one - maximum distance, so the ships are positioned in the antipodal points of the spheroid's equator. The time of the first collision is $t_{col_1} = \frac{14\pi}{5}\approx8.8$
Figure 22.  The first collision (also, the seventh intersection) of the corresponding time-minimal trajectories, i.e., the background Riemannian (blue) and the Randers preserving the optimal control (red); $t\leq\frac{14\pi}{5}\approx8.8$
Figure 23.  The first intersection (no collision) of the Riemannian (blue) and Randers (red) geodesics coming from the starting point in $(0, \frac{\pi}{2})$; with $t\leq1$ (solid), $t\leq 1.66$ (dashed). Right: "top" view
Figure 24.  The spherical coordinates $\phi$ (blue), $\theta$ (red) of the corresponding Riemannian (dashed, $t\leq1$) and Randers (solid, $t\leq1.66$) geodesics coming from the starting point in $(0, \frac{\pi}{2})$ till the first intersection (no collision) in the Cartesian (left) and the polar plot (right; time is expressed by length of the radius). The azimuth (longitude) of the first intersection $\phi\approx 45^\circ$ is marked by the black line
Figure 10.  The Riemannian background geodesic of the ellipsoid $\Sigma^2$ departing from $(0, \frac{\pi}{2})$ and its planar $xy$-projection; $t\leq25$
Figure 12.  The background Riemannian geodesic (blue) versus the corresponding Randers geodesic (red), $t\leq7$, and their $xy$-projection (right), $t\leq20$
Figure 13.  Comparing the corresponding geodesics in the absence (blue, $h$-Riemannian) and in the presence (red, $F$-Randers) of the perturbing vector field ($7$), with $c: = \frac{5}{7}$. Right: "top" view; $t\leq25$
Figure 14.  The Cartesian solutions in the absence (dashed) and presence (solid) of the applied rotational perturbation (7) in the base $(x, y, z)$ (left) and the corresponding polar plot of the spherical solutions in the base $(\phi, \theta)$ (right); $t\leq7$
Figure 11.  The Randers geodesic starting from $(0, \frac{\pi}{2})$ under the rotational perturbation (7), with $c: = \frac{5}{7}$, $t\leq25$, and its $xy$-projection, $t\leq20$
Figure 18.  The parametric plots of the solutions $\phi, \theta$ (blue, $t\leq7$, left), their first derivatives (black, $t\leq3$, middle) and second derivatives (right, $t\leq5.35$, overlapped), in the absence (dashed) and presence (solid) of the rotational wind ($7$)
Figure 17.  The resulting time-optimal steering angle $\Phi(t)$ ("course over ground") without (dashed blue) and with (solid red) the wind (7) in the Cartesian plot (left) and the corresponding polar plot (right); $t\leq7$
Figure 19.  The drift angle $\Psi(t)$ (dashed blue), the optimal control $\varphi(t)$ (black) and the optimal resulting angle ("course over ground") $\Phi(t)$ (red) in the presence of the perturbation (7); $t\leq7$
Figure 26.  The first collision (also, the first intersection) in $(\phi, \theta)\approx(45^\circ, 128^\circ)$ of the time-minimal trajectories generated from the same Riemannian geodesic (blue), i.e. the Randers geodesic with the preserved optimal control (red) and with the supplementary optimal control (black). On the right, "top view"; $t\leq3.3$
Figure 27.  The first collision (also, the first intersection) in $(\phi, \theta)\approx(138^\circ, 53^\circ)$ of the Riemannian geodesic (blue) and the Randers geodesic with the supplementary optimal control (black). The corresponding Randers geodesic preserving the optimal control is presented in red. Right: "top" view; $t\leq2.06$
Figure 25.  Left: the Riemannian geodesic (blue) and its two generated Randers geodesics: with the preserved optimal control (red, "Randers_1") and the supplementary optimal control (black, "Randers_2"). Right: the corresponding distances (Euclidean) between the ships: "Riemannian-Randers_1" (purple), "Riemannian-Randers_2" (dashed black) and "Randers_1-Randers_2" (blue); $t\leq 15$. The red horizontal line indicates collision and the green one the maximum distance, i.e., the ships are located in the antipodal points of the spheroid's equator
[1]

Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001

[2]

Gautier Picot. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 245-269. doi: 10.3934/dcdsb.2012.17.245

[3]

Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe. The coolest path problem. Networks & Heterogeneous Media, 2010, 5 (1) : 143-162. doi: 10.3934/nhm.2010.5.143

[4]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[5]

Louis Caccetta, Ian Loosen, Volker Rehbock. Computational aspects of the optimal transit path problem. Journal of Industrial & Management Optimization, 2008, 4 (1) : 95-105. doi: 10.3934/jimo.2008.4.95

[6]

Erik I. Verriest. Generalizations of Naismith's problem: Minimal transit time between two points in a heterogenous terrian. Conference Publications, 2011, 2011 (Special) : 1413-1422. doi: 10.3934/proc.2011.2011.1413

[7]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[8]

Roland Gunesch, Philipp Kunde. Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1615-1655. doi: 10.3934/dcds.2018067

[9]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[10]

Christophe Cheverry, Thierry Paul. On some geometry of propagation in diffractive time scales. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 499-538. doi: 10.3934/dcds.2012.32.499

[11]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[12]

Marc-Auréle Lagache, Ulysse Serres, Vincent Andrieu. Minimal time synthesis for a kinematic drone model. Mathematical Control & Related Fields, 2017, 7 (2) : 259-288. doi: 10.3934/mcrf.2017009

[13]

Guoliang Xue, Weiyi Zhang, Tie Wang, Krishnaiyan Thulasiraman. On the partial path protection scheme for WDM optical networks and polynomial time computability of primary and secondary paths. Journal of Industrial & Management Optimization, 2007, 3 (4) : 625-643. doi: 10.3934/jimo.2007.3.625

[14]

Chunhui Qiu, Rirong Yuan. On the Dirichlet problem for fully nonlinear elliptic equations on annuli of metric cones. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5707-5730. doi: 10.3934/dcds.2017247

[15]

J. C. Alvarez Paiva and E. Fernandes. Crofton formulas in projective Finsler spaces. Electronic Research Announcements, 1998, 4: 91-100.

[16]

Bernard Bonnard, Thierry Combot, Lionel Jassionnesse. Integrability methods in the time minimal coherence transfer for Ising chains of three spins. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4095-4114. doi: 10.3934/dcds.2015.35.4095

[17]

Adriano Regis Rodrigues, César Castilho, Jair Koiller. Vortex pairs on a triaxial ellipsoid and Kimura's conjecture. Journal of Geometric Mechanics, 2018, 10 (2) : 189-208. doi: 10.3934/jgm.2018007

[18]

Qiudong Wang. The diffusion time of the connecting orbit around rotation number zero for the monotone twist maps. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 255-274. doi: 10.3934/dcds.2000.6.255

[19]

Yi-Kuei Lin, Cheng-Ta Yeh. Reliability optimization of component assignment problem for a multistate network in terms of minimal cuts. Journal of Industrial & Management Optimization, 2011, 7 (1) : 211-227. doi: 10.3934/jimo.2011.7.211

[20]

Zhan Chen, Yuting Zou. A multiscale model for heterogeneous tumor spheroid in vitro. Mathematical Biosciences & Engineering, 2018, 15 (2) : 361-392. doi: 10.3934/mbe.2018016

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (53)
  • HTML views (164)
  • Cited by (0)

Other articles
by authors

[Back to Top]