2018, 10(1): 43-68. doi: 10.3934/jgm.2018002

On Some Aspects of the Discretization of the Suslov Problem

Zentrum Mathematik der Technische Universität München, D-85747 Garching bei München, Germany

Received  June 2015 Revised  October 2017 Published  December 2017

Fund Project: This research was supported by the DFG Collaborative Research Center TRR 109, "Discretization in Geometry and Dynamics"

In this paper we explore the discretization of Euler-Poincaré-Suslov equations on SO(3), i.e. of the Suslov problem. We show that the consistency order corresponding to the unreduced and reduced setups, when the discrete reconstruction equation is given by a Cayley retraction map, are related to each other in a nontrivial way. We give precise conditions under which general and variational integrators generate a discrete flow preserving the constraint distribution. We establish general consistency bounds and illustrate the performance of several discretizations by some plots. Moreover, along the lines of [15] we show that any constraints-preserving discretization may be understood as being generated by the exact evolution map of a time-periodic non-autonomous perturbation of the original continuous-time nonholonomic system.

Citation: Fernando Jiménez, Jürgen Scheurle. On Some Aspects of the Discretization of the Suslov Problem. Journal of Geometric Mechanics, 2018, 10 (1) : 43-68. doi: 10.3934/jgm.2018002
References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics; Dynamical Systems Ⅲ, Springer-Verlag, New York, 1989.

[2]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series 24, Springer-Verlag New-York, 2003.

[3]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, R. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[4]

A. I. Bobenko, Y. B. Suris, Discrete lagrangian reduction, discrete Euler-Poincaré equations and semidirect products, Lett. Math. Phys., 49 (1999), 79-93. doi: 10.1023/A:1007654605901.

[5]

N. Bou-Rabee, J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219. doi: 10.1007/s10208-008-9030-4.

[6]

F. Cantrijn, M. de León, J. C. Marrero, D. Martín de Diego, Reduction of nonholonomic mechanical systems with symmetry, Reports on Mathematical Physics, 42 (1998), 25-45. doi: 10.1016/S0034-4877(98)80003-7.

[7]

J. Cortés, E. Martínez, Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392. doi: 10.1088/0951-7715/14/5/322.

[8]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem, SIGMA: Symmetry Integrability Geom. Methods Appl. , 3 (2007), Paper 044, 15 pp.

[9]

Y. N. Fedorov, D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005), 2211-2241. doi: 10.1088/0951-7715/18/5/017.

[10]

S. Ferraro, D. Iglesias, D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics, Nonlinearity, 21 (2008), 1911-1928. doi: 10.1088/0951-7715/21/8/009.

[11]

S. Ferraro, F. Jiménez, D. Martín de Diego, New developments on the geometric nonholonomic integrator, Nonlinearity, 28 (2015), 871-900. doi: 10.1088/0951-7715/28/4/871.

[12]

B. Fielder and J. Scheurle, Discretization of homoclinic orbits, rapid forcing and invisible chaos, Memoirs of the American Mathematical Society, 119 (1996), viii+79 pp.

[13]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag Berlin, 2002.

[14]

D. Iglesias, J. C. Marrero, D. Martín de Diego, E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids, Journal of Nonlinear Sciences, 18 (2008), 351-397. doi: 10.1007/s00332-007-9012-8.

[15]

F. Jiménez, J. Scheurle, On the discretization of nonholonomic mechanics in ${{\mathbb{R}}^{n}}$, Journal of Geometric Mechanics, 7 (2015), 43-80. doi: 10.3934/jgm.2015.7.43.

[16]

M. Kobilarov, D. Martín de Diego, S. Ferraro, Ferraro, Simulating nonholonomic dynamics, Boletín de la Sociedad de Matemática Aplicada SeMA, 50 (2010), 61-81.

[17]

V. V. Kozlov, Invariant measures of the Euler-Poincaré equations on Lie algebras, Funct. Anal. Appl., 22 (1988), 58-59.

[18]

M. de León, A historical review on nonholonomic mechanics, Rev. R. Acad. Ciencias Exactas Fís. Nat. Serie A, 106 (2012), 191-224. doi: 10.1007/s13398-011-0046-2.

[19]

J. E. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314.

[20]

J. E. Marsden, S. Pekarsky, S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, Journal of Geometry and Physics, 36 (2000), 140-151. doi: 10.1016/S0393-0440(00)00018-8.

[21]

J. E. Marsden, M. West, Discrete Mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[22]

R. McLachlan, M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Science, 16 (2006), 283-328. doi: 10.1007/s00332-005-0698-1.

[23]

J. Moser, A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys, 139 (1991), 217-243. doi: 10.1007/BF02352494.

[24]

G. Suslov, Theoretical Mechanics, 2, Kiev (in Russian), 1902.

[25]

A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.

show all references

References:
[1]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics; Dynamical Systems Ⅲ, Springer-Verlag, New York, 1989.

[2]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series 24, Springer-Verlag New-York, 2003.

[3]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, R. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[4]

A. I. Bobenko, Y. B. Suris, Discrete lagrangian reduction, discrete Euler-Poincaré equations and semidirect products, Lett. Math. Phys., 49 (1999), 79-93. doi: 10.1023/A:1007654605901.

[5]

N. Bou-Rabee, J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009), 197-219. doi: 10.1007/s10208-008-9030-4.

[6]

F. Cantrijn, M. de León, J. C. Marrero, D. Martín de Diego, Reduction of nonholonomic mechanical systems with symmetry, Reports on Mathematical Physics, 42 (1998), 25-45. doi: 10.1016/S0034-4877(98)80003-7.

[7]

J. Cortés, E. Martínez, Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392. doi: 10.1088/0951-7715/14/5/322.

[8]

Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem, SIGMA: Symmetry Integrability Geom. Methods Appl. , 3 (2007), Paper 044, 15 pp.

[9]

Y. N. Fedorov, D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005), 2211-2241. doi: 10.1088/0951-7715/18/5/017.

[10]

S. Ferraro, D. Iglesias, D. Martín de Diego, Momentum and energy preserving integrators for nonholonomic dynamics, Nonlinearity, 21 (2008), 1911-1928. doi: 10.1088/0951-7715/21/8/009.

[11]

S. Ferraro, F. Jiménez, D. Martín de Diego, New developments on the geometric nonholonomic integrator, Nonlinearity, 28 (2015), 871-900. doi: 10.1088/0951-7715/28/4/871.

[12]

B. Fielder and J. Scheurle, Discretization of homoclinic orbits, rapid forcing and invisible chaos, Memoirs of the American Mathematical Society, 119 (1996), viii+79 pp.

[13]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag Berlin, 2002.

[14]

D. Iglesias, J. C. Marrero, D. Martín de Diego, E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids, Journal of Nonlinear Sciences, 18 (2008), 351-397. doi: 10.1007/s00332-007-9012-8.

[15]

F. Jiménez, J. Scheurle, On the discretization of nonholonomic mechanics in ${{\mathbb{R}}^{n}}$, Journal of Geometric Mechanics, 7 (2015), 43-80. doi: 10.3934/jgm.2015.7.43.

[16]

M. Kobilarov, D. Martín de Diego, S. Ferraro, Ferraro, Simulating nonholonomic dynamics, Boletín de la Sociedad de Matemática Aplicada SeMA, 50 (2010), 61-81.

[17]

V. V. Kozlov, Invariant measures of the Euler-Poincaré equations on Lie algebras, Funct. Anal. Appl., 22 (1988), 58-59.

[18]

M. de León, A historical review on nonholonomic mechanics, Rev. R. Acad. Ciencias Exactas Fís. Nat. Serie A, 106 (2012), 191-224. doi: 10.1007/s13398-011-0046-2.

[19]

J. E. Marsden, S. Pekarsky, S. Shkoller, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999), 1647-1662. doi: 10.1088/0951-7715/12/6/314.

[20]

J. E. Marsden, S. Pekarsky, S. Shkoller, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, Journal of Geometry and Physics, 36 (2000), 140-151. doi: 10.1016/S0393-0440(00)00018-8.

[21]

J. E. Marsden, M. West, Discrete Mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[22]

R. McLachlan, M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Science, 16 (2006), 283-328. doi: 10.1007/s00332-005-0698-1.

[23]

J. Moser, A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys, 139 (1991), 217-243. doi: 10.1007/BF02352494.

[24]

G. Suslov, Theoretical Mechanics, 2, Kiev (in Russian), 1902.

[25]

A. Weinstein, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996), 207-231.

Figure 1.  In this figure we display the performance of the midpoint rule ($\overline{\mbox{DSP }}(\omega^k,\lambda_{k+1};\omega^{k+1}) = 0$, with inertia matrix $\mathbb{I}$ and initial values $\omega_1(0)$ and $\omega_2(0)$ introduced above) for the nonholonomic rigid body with a time step of size $\epsilon = 10^{-3}$. The solid red line is obtained through a RK4 integrator (which we consider an accurate approximation of the continuous nonlinear dynamics over a short time interval), while the blue dots represent the performance of the midpoint rule. The plots $(a)$ and $(b)$ correspond to the dynamical variables $\omega_1$, $\omega_2$, while $(c)$ displays the Lagrange multipliers $\lambda.$ On the other hand $(d)$ shows the inconsistent multipliers generated by the nonholonomic variational integrator. Finally, $(e)$ and $(f)$ show the preservation of the constraints and the energy $E_l(\hat\omega)$ up through round off errors, respectively.
Figure 2.  This figure displays the comparison between the midpoint rule (the same as in Figure 1) and the variational integrator (37), (38), for a time step of size $\epsilon = 10^0 = 1$ (we recall that this integrator is also order 2 consistent in the dynamical variables). The former is represented by the green points and the latter by the blue ones, while the solid red line still represents the performance of a RK4 method. Variables $\omega_1$ $(a)$, $\omega_2$ $(b)$, $\lambda$ $(c)$ and $E_l$ $(d)$ are displayed, while $(e)$ shows the preservation of the constraints by the variational integrator up through round off errors. We observe a better performance of the variational integrator, mainly with respect to the preservation of energy, a fact which, considering bigger time steps, leads to the conclusion that its convergence to the actual solution is much faster and its long-term behavior is much more accurate.
[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[2]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[3]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[4]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[5]

Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167

[6]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[7]

Thierry Paul, David Sauzin. Normalization in Banach scale Lie algebras via mould calculus and applications. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4461-4487. doi: 10.3934/dcds.2017191

[8]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[9]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

[10]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[11]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[12]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[13]

Juan Carlos Marrero. Hamiltonian mechanical systems on Lie algebroids, unimodularity and preservation of volumes. Journal of Geometric Mechanics, 2010, 2 (3) : 243-263. doi: 10.3934/jgm.2010.2.243

[14]

Leonardo Colombo, David Martín de Diego. Higher-order variational problems on lie groups and optimal control applications. Journal of Geometric Mechanics, 2014, 6 (4) : 451-478. doi: 10.3934/jgm.2014.6.451

[15]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[16]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[17]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[18]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

[19]

Velimir Jurdjevic. Affine-quadratic problems on Lie groups. Mathematical Control & Related Fields, 2013, 3 (3) : 347-374. doi: 10.3934/mcrf.2013.3.347

[20]

Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008

2016 Impact Factor: 0.857

Article outline

Figures and Tables

[Back to Top]