June 2017, 9(2): 157-165. doi: 10.3934/jgm.2017006

The Madelung transform as a momentum map

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada

Received  December 2015 Revised  May 2016 Published  May 2017

The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.

Citation: Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006
References:
[1]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873. doi: 10.1088/0951-7715/25/10/2843.

[2]

B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress.

[3]

B. Kolev, Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574. doi: 10.3934/dcds.2007.19.555.

[4]

E. Madelung, Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326. doi: 10.1007/BF01400372.

[5]

J. E. MarsdenT. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177. doi: 10.2307/1999527.

[6]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.

[7]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323. doi: 10.1016/0167-2789(83)90134-3.

[8]

M.-K. von Renesse, An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869. doi: 10.4153/CMB-2011-121-9.

[9]

A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557. doi: 10.4310/jdg/1214437787.

show all references

References:
[1]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873. doi: 10.1088/0951-7715/25/10/2843.

[2]

B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress.

[3]

B. Kolev, Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574. doi: 10.3934/dcds.2007.19.555.

[4]

E. Madelung, Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326. doi: 10.1007/BF01400372.

[5]

J. E. MarsdenT. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177. doi: 10.2307/1999527.

[6]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.

[7]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323. doi: 10.1016/0167-2789(83)90134-3.

[8]

M.-K. von Renesse, An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869. doi: 10.4153/CMB-2011-121-9.

[9]

A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557. doi: 10.4310/jdg/1214437787.

[1]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure & Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[2]

Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81

[3]

José Luis López, Jesús Montejo-Gámez. On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models. Kinetic & Related Models, 2012, 5 (3) : 517-536. doi: 10.3934/krm.2012.5.517

[4]

Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288

[5]

Shi Jin, Peng Qi. A hybrid Schrödinger/Gaussian beam solver for quantum barriers and surface hopping. Kinetic & Related Models, 2011, 4 (4) : 1097-1120. doi: 10.3934/krm.2011.4.1097

[6]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[7]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[8]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[9]

Patrizia Pucci. Critical Schrödinger-Hardy systems in the Heisenberg group. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 375-400. doi: 10.3934/dcdss.2019025

[10]

Florian Méhats, Olivier Pinaud. A problem of moment realizability in quantum statistical physics. Kinetic & Related Models, 2011, 4 (4) : 1143-1158. doi: 10.3934/krm.2011.4.1143

[11]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[12]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[13]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[14]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[15]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[16]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[17]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[18]

Yohei Yamazaki. Transverse instability for a system of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 565-588. doi: 10.3934/dcdsb.2014.19.565

[19]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[20]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (8)
  • HTML views (30)
  • Cited by (1)

Other articles
by authors

[Back to Top]