2014, 6(2): 167-236. doi: 10.3934/jgm.2014.6.167

An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems

1. 

Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca and CONICET

2. 

Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 172, 1900 La Plata, Argentina

3. 

Departamento de Mateemática and Instituto de Matemática Bahía Blanca, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca and CONICET, Argentina

Received  March 2011 Revised  May 2014 Published  June 2014

This paper extends the Gotay-Nester and the Dirac theories of constrained systems in order to deal with Dirac dynamical systems in the integrable case. Integrable Dirac dynamical systems are viewed as constrained systems where the constraint submanifolds are foliated. The cases considered usually in the literature correspond to a trivial foliation, with only one leaf. A Constraint Algorithm for Dirac dynamical systems (CAD), which extends the Gotay-Nester algorithm, is developed. Evolution equations are written using a Dirac bracket adapted to the foliations and an adapted total energy. The interesting example of LC circuits is developed in detail. The paper emphasizes the point of view that Dirac and Gotay-Nester theories are, in a certain sense, dual and that using a combination of results from both theories may have advantages in dealing with a given example, rather than using systematically one or the other.
Citation: Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167-236. doi: 10.3934/jgm.2014.6.167
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, (1978), 0.

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics., Springer-Verlag, (1989), 0. doi: 10.1007/978-1-4757-2063-1.

[3]

P. Balseiro, M. de León, J. C. Marrero and D. Martĺn de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1. doi: 10.3934/jgm.2009.1.1.

[4]

M. Barbero-Liñán and M. C. Muñoz-Lecanda, Constraint algorithm for extremals in optimal control problems,, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1221. doi: 10.1142/S0219887809004193.

[5]

J. Barcelos-Neto and N. R. F. Braga, Symplectic analysis of a Dirac constrained theory,, J. Math. Phys., 35 (1994), 3497. doi: 10.1063/1.530425.

[6]

C. Batlle, J. Gomis, J. M. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems,, J. Math. Phys., 27 (1986), 2953. doi: 10.1063/1.527274.

[7]

C. Batlle, J. Gomis, J. M. Pons and N. Roman, Lagrangian and Hamiltonian constraints,, Lett. Math. Phys., 13 (1987), 17. doi: 10.1007/BF00570763.

[8]

K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, volume 174 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1988).

[9]

G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems,, Rep. Math. Phys., 53 (2004), 211. doi: 10.1016/S0034-4877(04)90013-4.

[10]

G. Blankenstein and T. S. Ratiu, Geometry of Dirac Structures,, Course at Summer School and Conference on Poisson Geometry, (2005).

[11]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer-Verlag, (2003), 0. doi: 10.1007/b97376.

[12]

A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits,, In Differential geometry and control (Boulder, 64 (1999), 103. doi: 10.1090/pspum/064/1654513.

[13]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21. doi: 10.1007/BF02199365.

[14]

A. V. Borisov and I. S. Mamaev, On the history of the development of the nonholonomic dynamics,, Regul. Chaotic Dyn., 7 (2002), 43. doi: 10.1070/RD2002v007n01ABEH000194.

[15]

H. Bursztyn, Dirac Structures and Applications, La reconquête de la dynamique par la géométrie après Lagrange,, Conference at IHES, (2010).

[16]

H. Bursztyn, A brief introduction to Dirac manifolds,, Preprint, (2011).

[17]

H. Bursztyn and M. Crainic, Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps,, J. Differential Geom., 82 (2009), 501.

[18]

F. Cantrijn, J. F. Cariñena, M. Crampin and L. A. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353. doi: 10.1016/0393-0440(86)90014-8.

[19]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román, Canonical transformations theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961. doi: 10.1063/1.526864.

[20]

J. F. Cariñena, Theory of singular Lagrangians,, Fortschr. Phys., 38 (1990), 641. doi: 10.1002/prop.2190380902.

[21]

J. F. Cariñena and M. F. Rañada, Blow-up regularization of singular Lagrangians,, J. Math. Phys., 25 (1984), 2430. doi: 10.1063/1.526450.

[22]

J. F. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers,, J. Phys. A, 26 (1993), 1335. doi: 10.1088/0305-4470/26/6/016.

[23]

J. F. Cariñena and M. F. Rañada, Comments on the presymplectic formalism and the theory of regular Lagrangians with constraints,, J. Phys. A, 28 (1995), 0305. doi: 10.1088/0305-4470/28/3/006.

[24]

J. F. Cariñena, C. Lñpez and N. Román-Roy, Origin of the Lagrangian constraints and their relation with the Hamiltonian formulation,, J. Math. Phys., 29 (1988), 1143. doi: 10.1063/1.527955.

[25]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975. doi: 10.1088/0305-4470/39/35/003.

[26]

H. Cendra, M. Etchechoury and S. Ferraro, The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry,, An. Acad. Nac. de Cs. Ex. Fís. Nat. (Argentina), 64 (2012), 95.

[27]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, In Mathematics unlimited-2001 and beyond, (2001), 221.

[28]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001), 0065. doi: 10.1090/memo/0722.

[29]

H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Mosc. Math. J., 3 (2003), 833.

[30]

H. Cendra, A. Ibort, M. de León and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245.

[31]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein anchored vector bundle reduction for mechanical systems with symmetry,, Preprint, (2011).

[32]

M. Chaichian, D. Louis Martinez and L. Lusanna, Dirac's constrained systems: The classification of second-class constraints,, Ann. Physics, 232 (1994), 40. doi: 10.1006/aphy.1994.1049.

[33]

D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians,, J. Math. Phys., 35 (1994), 3410. doi: 10.1063/1.530476.

[34]

L. O. Chua and J. D. McPherson, Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks,, IEEE Trans. Circuits and Systems, CAS-21 (1974), 277.

[35]

L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, volume 47 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1989), 0.

[36]

J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, volume 1793 of Lecture Notes in Mathematics,, Springer-Verlag, (2002), 3.

[37]

J. Cortés, M. de León, J. C. Marrero, D. M. de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509. doi: 10.1142/S0219887806001211.

[38]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete Contin. Dyn. Syst., 24 (2009), 213. doi: 10.3934/dcds.2009.24.213.

[39]

T. Courant and A. Weinstein, Beyond Poisson structures,, In Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, (1986), 39.

[40]

T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1.

[41]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897. doi: 10.1142/S0219887811005452.

[42]

M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames,, J. Geom. Mech., 3 (2011), 23. doi: 10.3934/jgm.2011.3.23.

[43]

M. de León, J. Marín-Solano and J. C. Marrero, The constraint algorithm in the jet formalism,, Differential Geom. Appl., 6 (1996), 275. doi: 10.1016/0926-2245(96)82423-5.

[44]

M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105. doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.

[45]

M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds,, J. Math. Phys., 34 (1993), 622. doi: 10.1063/1.530264.

[46]

M. de León, J. C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets,, J. Phys. A, 29 (1996), 6843. doi: 10.1088/0305-4470/29/21/016.

[47]

M. de León, J. Carlos Marrero, D. Martín de Diego and M. Vaquero, On the Hamilton-Jacobi theory for singular Lagrangian systems,, J. Math. Phys., 54 (2013), 0022. doi: 10.1063/1.4796088.

[48]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, 38 (2005), 0305. doi: 10.1088/0305-4470/38/24/R01.

[49]

M. de León and D. Martín de Diego, On the geometry of non-holonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389. doi: 10.1063/1.531571.

[50]

M. de León, D. Martín de Diego and P. Pitanga, A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures,, J. Phys. A, 28 (1995), 4951. doi: 10.1088/0305-4470/28/17/025.

[51]

M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting,, Int. J. Geom. Methods Mod. Phys., 9 (2012), 0219. doi: 10.1142/S0219887812500740.

[52]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1989), 0.

[53]

M. Delgado-Téllez and A. Ibort, On the geometry and topology of singular optimal control problems and their solutions,, Discrete Contin. Dyn. Syst., (2003), 223.

[54]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Math., 2 (1950), 129. doi: 10.4153/CJM-1950-012-1.

[55]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326. doi: 10.1098/rspa.1958.0141.

[56]

P. A. M. Dirac, Lectures on quantum mechanics,, Belfer Graduate School of Science Monographs Series. Belfer Graduate School of Science, (1967).

[57]

M. J. Gotay, On the validity of Dirac's conjecture regarding first-class secondary constraints,, J. Phys. A, 16 (1983), 0305. doi: 10.1088/0305-4470/16/5/003.

[58]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129.

[59]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. II. The second-order equation problem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 32 (1980), 1.

[60]

M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds,, In Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., (1979), 78.

[61]

M. J. Gotay and J. M. Nester, Apartheid in the Dirac theory of constraints,, J. Phys. A, 17 (1984), 3063. doi: 10.1088/0305-4470/17/15/023.

[62]

M. J. Gotay and J. Śniatycki, On the quantization of presymplectic dynamical systems via coisotropic imbeddings,, Comm. Math. Phys., 82 (): 377. doi: 10.1007/BF01237045.

[63]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388. doi: 10.1063/1.523597.

[64]

J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint,, J. Math. Phys., 50 (2009), 0022. doi: 10.1063/1.3049752.

[65]

X. Gràcia and J. M. Pons, Constrained systems: A unified geometric approach,, Internat. J. Theoret. Phys., 30 (1991), 511. doi: 10.1007/BF00672895.

[66]

X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems,, Differential Geom. Appl., 2 (1992), 223. doi: 10.1016/0926-2245(92)90012-C.

[67]

E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds,, J. Phys. A, 43 (2010). doi: 10.1088/1751-8113/43/50/505201.

[68]

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems,, Princeton University Press, (1992), 0.

[69]

D. D. Holm, Geometric Mechanics. Part I,, Dynamics and symmetry. Imperial College Press, (2011), 978.

[70]

D. D. Holm, Geometric mechanics. Part II. Rotating, translating and rolling,, Imperial College Press, (2011), 978. doi: 10.1142/p802.

[71]

A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295.

[72]

A. Ibort, M. de León, J. C. Marrero and D. M. de Diego, Dirac brackets in constrained dynamics,, Fortschr. Phys., 47 (1999), 459. doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E.

[73]

A. Ibort and J. Marín-Solano, Coisotropic regularization of singular Lagrangians,, J. Math. Phys., 36 (1995), 5522. doi: 10.1063/1.531275.

[74]

D. Iglesias, J. C. Marrero, D. M. de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 1815. doi: 10.3842/SIGMA.2007.049.

[75]

D. Krupka, The structure of the Euler-Lagrange mapping,, Izv. Vyssh. Uchebn. Zaved. Mat., 51 (2007), 52. doi: 10.3103/S1066369X07120043.

[76]

O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints,, J. Math. Phys., 35 (1994), 6557. doi: 10.1063/1.530691.

[77]

O. Krupková, A new look at Dirac's theory of constrained systems,, In Gravity, (1996), 507. doi: 10.1142/9789812830180_0024.

[78]

G. H. Livens, On Hamilton's principle and the modified function in analytical dynamics,, Proc. Roy. Soc. Edinburgh, 39 (1919).

[79]

L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonian constraints,, Riv. Nuovo Cimento (3), 14 (1991), 1. doi: 10.1007/BF02810161.

[80]

L. Lusanna, Hamiltonian constraints and Dirac observables,, In Geometry of constrained dynamical systems (Cambridge, (1994), 117. doi: 10.1017/CBO9780511895722.014.

[81]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A, 30 (1997), 277. doi: 10.1088/0305-4470/30/1/020.

[82]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, volume 17 of Texts in Applied Mathematics. Springer-Verlag, (1994).

[83]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007). doi: 10.3842/SIGMA.2007.050.

[84]

E. Martínez, Variational calculus on Lie algebroids,, ESAIM Control Optim. Calc. Var., 14 (2008), 356. doi: 10.1051/cocv:2007056.

[85]

B. M. Maschke and A. J. van der Schaft, Note on the Dynamics of lc Circuits with Elements in Excess,, Memorandum 1426, (1426).

[86]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators,, J. Franklin Inst., 329 (1992), 923. doi: 10.1016/S0016-0032(92)90049-M.

[87]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 73. doi: 10.1109/81.372847.

[88]

G. Mendella, G. Marmo and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A, 28 (1995), 149. doi: 10.1088/0305-4470/28/1/018.

[89]

L. Moreau and D. Aeyels, A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits,, SIAM Rev., 46 (2004), 59. doi: 10.1137/S0036144502409020.

[90]

N. Mukunda, Time-dependent constraints in classical dynamics,, Phys. Scripta, 21 (1980), 801. doi: 10.1088/0031-8949/21/6/004.

[91]

N. Mukunda, The life and work of P. A. M. Dirac,, In Recent developments in theoretical physics (Kottayam, (1986), 260.

[92]

Y. I. Neĭmark and N. A. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972).

[93]

N. Nikolaev, Reduction Theory and Dirac Geometry,, Master's thesis, (2011).

[94]

F. L. Pritchard, On implicit systems of differential equations,, J. Differential Equations, 194 (2003), 328. doi: 10.1016/S0022-0396(03)00191-8.

[95]

P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110. doi: 10.1006/jdeq.1994.1046.

[96]

K. D. Rothe and F. G. Scholtz, On the Hamilton-Jacobi equation for second-class constrained systems,, Ann. Physics, 308 (2003), 639. doi: 10.1016/j.aop.2003.08.005.

[97]

R. Skinner, First-order equations of motion for classical mechanics,, J. Math. Phys., 24 (1983), 2581. doi: 10.1063/1.525653.

[98]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T^* Q\oplus TQ$,, J. Math. Phys., 24 (1983), 2589. doi: 10.1063/1.525654.

[99]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. II. Gauge transformations,, J. Math. Phys., 24 (1983), 2595. doi: 10.1063/1.525655.

[100]

S. Smale, On the mathematical foundations of electrical circuit theory,, J. Differential Geometry, 7 (1972), 193.

[101]

J. Śniatycki, Dirac brackets in geometric dynamics,, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 365.

[102]

E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective,, Wiley-Interscience [John Wiley & Sons], (1974).

[103]

K. Sundermeyer, Constrained Dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, volume 169 of Lecture Notes in Physics,, Springer-Verlag, (1982).

[104]

Z. Urban and D. Krupka, Variational sequences in mechanics on Grassmann fibrations,, Acta Appl. Math., 112 (2010), 225. doi: 10.1007/s10440-010-9561-y.

[105]

A. J. van der Schaft, Equations of motion for Hamiltonian systems with constraints,, J. Phys. A, 20 (1987), 3271. doi: 10.1088/0305-4470/20/11/030.

[106]

A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203. doi: 10.1016/S0034-4877(98)80176-6.

[107]

A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225. doi: 10.1016/0034-4877(94)90038-8.

[108]

A. Weinstein, The local structure of Poisson manifolds,, J. Differential Geom., 18 (1983), 523.

[109]

A. Weinstein., Lagrangian mechanics and groupoids., In Mechanics day (Waterloo, (1992), 207.

[110]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems,, J. Geom. Phys., 57 (2006), 133. doi: 10.1016/j.geomphys.2006.02.009.

[111]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures,, J. Geom. Phys., 57 (2006), 209. doi: 10.1016/j.geomphys.2006.02.012.

[112]

D. V. Zenkov, A. M. Bloch and J. E. Marsden, The energy-momentum method for the stability of non-holonomic systems,, Dynam. Stability Systems, 13 (1998), 123. doi: 10.1080/02681119808806257.

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, (1978), 0.

[2]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics., Springer-Verlag, (1989), 0. doi: 10.1007/978-1-4757-2063-1.

[3]

P. Balseiro, M. de León, J. C. Marrero and D. Martĺn de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1. doi: 10.3934/jgm.2009.1.1.

[4]

M. Barbero-Liñán and M. C. Muñoz-Lecanda, Constraint algorithm for extremals in optimal control problems,, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1221. doi: 10.1142/S0219887809004193.

[5]

J. Barcelos-Neto and N. R. F. Braga, Symplectic analysis of a Dirac constrained theory,, J. Math. Phys., 35 (1994), 3497. doi: 10.1063/1.530425.

[6]

C. Batlle, J. Gomis, J. M. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems,, J. Math. Phys., 27 (1986), 2953. doi: 10.1063/1.527274.

[7]

C. Batlle, J. Gomis, J. M. Pons and N. Roman, Lagrangian and Hamiltonian constraints,, Lett. Math. Phys., 13 (1987), 17. doi: 10.1007/BF00570763.

[8]

K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, volume 174 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1988).

[9]

G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems,, Rep. Math. Phys., 53 (2004), 211. doi: 10.1016/S0034-4877(04)90013-4.

[10]

G. Blankenstein and T. S. Ratiu, Geometry of Dirac Structures,, Course at Summer School and Conference on Poisson Geometry, (2005).

[11]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer-Verlag, (2003), 0. doi: 10.1007/b97376.

[12]

A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits,, In Differential geometry and control (Boulder, 64 (1999), 103. doi: 10.1090/pspum/064/1654513.

[13]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21. doi: 10.1007/BF02199365.

[14]

A. V. Borisov and I. S. Mamaev, On the history of the development of the nonholonomic dynamics,, Regul. Chaotic Dyn., 7 (2002), 43. doi: 10.1070/RD2002v007n01ABEH000194.

[15]

H. Bursztyn, Dirac Structures and Applications, La reconquête de la dynamique par la géométrie après Lagrange,, Conference at IHES, (2010).

[16]

H. Bursztyn, A brief introduction to Dirac manifolds,, Preprint, (2011).

[17]

H. Bursztyn and M. Crainic, Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps,, J. Differential Geom., 82 (2009), 501.

[18]

F. Cantrijn, J. F. Cariñena, M. Crampin and L. A. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353. doi: 10.1016/0393-0440(86)90014-8.

[19]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román, Canonical transformations theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961. doi: 10.1063/1.526864.

[20]

J. F. Cariñena, Theory of singular Lagrangians,, Fortschr. Phys., 38 (1990), 641. doi: 10.1002/prop.2190380902.

[21]

J. F. Cariñena and M. F. Rañada, Blow-up regularization of singular Lagrangians,, J. Math. Phys., 25 (1984), 2430. doi: 10.1063/1.526450.

[22]

J. F. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers,, J. Phys. A, 26 (1993), 1335. doi: 10.1088/0305-4470/26/6/016.

[23]

J. F. Cariñena and M. F. Rañada, Comments on the presymplectic formalism and the theory of regular Lagrangians with constraints,, J. Phys. A, 28 (1995), 0305. doi: 10.1088/0305-4470/28/3/006.

[24]

J. F. Cariñena, C. Lñpez and N. Román-Roy, Origin of the Lagrangian constraints and their relation with the Hamiltonian formulation,, J. Math. Phys., 29 (1988), 1143. doi: 10.1063/1.527955.

[25]

H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975. doi: 10.1088/0305-4470/39/35/003.

[26]

H. Cendra, M. Etchechoury and S. Ferraro, The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry,, An. Acad. Nac. de Cs. Ex. Fís. Nat. (Argentina), 64 (2012), 95.

[27]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, In Mathematics unlimited-2001 and beyond, (2001), 221.

[28]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001), 0065. doi: 10.1090/memo/0722.

[29]

H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Mosc. Math. J., 3 (2003), 833.

[30]

H. Cendra, A. Ibort, M. de León and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245.

[31]

H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein anchored vector bundle reduction for mechanical systems with symmetry,, Preprint, (2011).

[32]

M. Chaichian, D. Louis Martinez and L. Lusanna, Dirac's constrained systems: The classification of second-class constraints,, Ann. Physics, 232 (1994), 40. doi: 10.1006/aphy.1994.1049.

[33]

D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians,, J. Math. Phys., 35 (1994), 3410. doi: 10.1063/1.530476.

[34]

L. O. Chua and J. D. McPherson, Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks,, IEEE Trans. Circuits and Systems, CAS-21 (1974), 277.

[35]

L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, volume 47 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1989), 0.

[36]

J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, volume 1793 of Lecture Notes in Mathematics,, Springer-Verlag, (2002), 3.

[37]

J. Cortés, M. de León, J. C. Marrero, D. M. de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509. doi: 10.1142/S0219887806001211.

[38]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete Contin. Dyn. Syst., 24 (2009), 213. doi: 10.3934/dcds.2009.24.213.

[39]

T. Courant and A. Weinstein, Beyond Poisson structures,, In Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, (1986), 39.

[40]

T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1.

[41]

M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897. doi: 10.1142/S0219887811005452.

[42]

M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames,, J. Geom. Mech., 3 (2011), 23. doi: 10.3934/jgm.2011.3.23.

[43]

M. de León, J. Marín-Solano and J. C. Marrero, The constraint algorithm in the jet formalism,, Differential Geom. Appl., 6 (1996), 275. doi: 10.1016/0926-2245(96)82423-5.

[44]

M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105. doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.

[45]

M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds,, J. Math. Phys., 34 (1993), 622. doi: 10.1063/1.530264.

[46]

M. de León, J. C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets,, J. Phys. A, 29 (1996), 6843. doi: 10.1088/0305-4470/29/21/016.

[47]

M. de León, J. Carlos Marrero, D. Martín de Diego and M. Vaquero, On the Hamilton-Jacobi theory for singular Lagrangian systems,, J. Math. Phys., 54 (2013), 0022. doi: 10.1063/1.4796088.

[48]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, 38 (2005), 0305. doi: 10.1088/0305-4470/38/24/R01.

[49]

M. de León and D. Martín de Diego, On the geometry of non-holonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389. doi: 10.1063/1.531571.

[50]

M. de León, D. Martín de Diego and P. Pitanga, A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures,, J. Phys. A, 28 (1995), 4951. doi: 10.1088/0305-4470/28/17/025.

[51]

M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting,, Int. J. Geom. Methods Mod. Phys., 9 (2012), 0219. doi: 10.1142/S0219887812500740.

[52]

M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1989), 0.

[53]

M. Delgado-Téllez and A. Ibort, On the geometry and topology of singular optimal control problems and their solutions,, Discrete Contin. Dyn. Syst., (2003), 223.

[54]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Math., 2 (1950), 129. doi: 10.4153/CJM-1950-012-1.

[55]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326. doi: 10.1098/rspa.1958.0141.

[56]

P. A. M. Dirac, Lectures on quantum mechanics,, Belfer Graduate School of Science Monographs Series. Belfer Graduate School of Science, (1967).

[57]

M. J. Gotay, On the validity of Dirac's conjecture regarding first-class secondary constraints,, J. Phys. A, 16 (1983), 0305. doi: 10.1088/0305-4470/16/5/003.

[58]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129.

[59]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. II. The second-order equation problem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 32 (1980), 1.

[60]

M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds,, In Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., (1979), 78.

[61]

M. J. Gotay and J. M. Nester, Apartheid in the Dirac theory of constraints,, J. Phys. A, 17 (1984), 3063. doi: 10.1088/0305-4470/17/15/023.

[62]

M. J. Gotay and J. Śniatycki, On the quantization of presymplectic dynamical systems via coisotropic imbeddings,, Comm. Math. Phys., 82 (): 377. doi: 10.1007/BF01237045.

[63]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388. doi: 10.1063/1.523597.

[64]

J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint,, J. Math. Phys., 50 (2009), 0022. doi: 10.1063/1.3049752.

[65]

X. Gràcia and J. M. Pons, Constrained systems: A unified geometric approach,, Internat. J. Theoret. Phys., 30 (1991), 511. doi: 10.1007/BF00672895.

[66]

X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems,, Differential Geom. Appl., 2 (1992), 223. doi: 10.1016/0926-2245(92)90012-C.

[67]

E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds,, J. Phys. A, 43 (2010). doi: 10.1088/1751-8113/43/50/505201.

[68]

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems,, Princeton University Press, (1992), 0.

[69]

D. D. Holm, Geometric Mechanics. Part I,, Dynamics and symmetry. Imperial College Press, (2011), 978.

[70]

D. D. Holm, Geometric mechanics. Part II. Rotating, translating and rolling,, Imperial College Press, (2011), 978. doi: 10.1142/p802.

[71]

A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295.

[72]

A. Ibort, M. de León, J. C. Marrero and D. M. de Diego, Dirac brackets in constrained dynamics,, Fortschr. Phys., 47 (1999), 459. doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E.

[73]

A. Ibort and J. Marín-Solano, Coisotropic regularization of singular Lagrangians,, J. Math. Phys., 36 (1995), 5522. doi: 10.1063/1.531275.

[74]

D. Iglesias, J. C. Marrero, D. M. de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 1815. doi: 10.3842/SIGMA.2007.049.

[75]

D. Krupka, The structure of the Euler-Lagrange mapping,, Izv. Vyssh. Uchebn. Zaved. Mat., 51 (2007), 52. doi: 10.3103/S1066369X07120043.

[76]

O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints,, J. Math. Phys., 35 (1994), 6557. doi: 10.1063/1.530691.

[77]

O. Krupková, A new look at Dirac's theory of constrained systems,, In Gravity, (1996), 507. doi: 10.1142/9789812830180_0024.

[78]

G. H. Livens, On Hamilton's principle and the modified function in analytical dynamics,, Proc. Roy. Soc. Edinburgh, 39 (1919).

[79]

L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonian constraints,, Riv. Nuovo Cimento (3), 14 (1991), 1. doi: 10.1007/BF02810161.

[80]

L. Lusanna, Hamiltonian constraints and Dirac observables,, In Geometry of constrained dynamical systems (Cambridge, (1994), 117. doi: 10.1017/CBO9780511895722.014.

[81]

G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A, 30 (1997), 277. doi: 10.1088/0305-4470/30/1/020.

[82]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, volume 17 of Texts in Applied Mathematics. Springer-Verlag, (1994).

[83]

E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007). doi: 10.3842/SIGMA.2007.050.

[84]

E. Martínez, Variational calculus on Lie algebroids,, ESAIM Control Optim. Calc. Var., 14 (2008), 356. doi: 10.1051/cocv:2007056.

[85]

B. M. Maschke and A. J. van der Schaft, Note on the Dynamics of lc Circuits with Elements in Excess,, Memorandum 1426, (1426).

[86]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators,, J. Franklin Inst., 329 (1992), 923. doi: 10.1016/S0016-0032(92)90049-M.

[87]

B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 73. doi: 10.1109/81.372847.

[88]

G. Mendella, G. Marmo and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A, 28 (1995), 149. doi: 10.1088/0305-4470/28/1/018.

[89]

L. Moreau and D. Aeyels, A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits,, SIAM Rev., 46 (2004), 59. doi: 10.1137/S0036144502409020.

[90]

N. Mukunda, Time-dependent constraints in classical dynamics,, Phys. Scripta, 21 (1980), 801. doi: 10.1088/0031-8949/21/6/004.

[91]

N. Mukunda, The life and work of P. A. M. Dirac,, In Recent developments in theoretical physics (Kottayam, (1986), 260.

[92]

Y. I. Neĭmark and N. A. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972).

[93]

N. Nikolaev, Reduction Theory and Dirac Geometry,, Master's thesis, (2011).

[94]

F. L. Pritchard, On implicit systems of differential equations,, J. Differential Equations, 194 (2003), 328. doi: 10.1016/S0022-0396(03)00191-8.

[95]

P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110. doi: 10.1006/jdeq.1994.1046.

[96]

K. D. Rothe and F. G. Scholtz, On the Hamilton-Jacobi equation for second-class constrained systems,, Ann. Physics, 308 (2003), 639. doi: 10.1016/j.aop.2003.08.005.

[97]

R. Skinner, First-order equations of motion for classical mechanics,, J. Math. Phys., 24 (1983), 2581. doi: 10.1063/1.525653.

[98]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T^* Q\oplus TQ$,, J. Math. Phys., 24 (1983), 2589. doi: 10.1063/1.525654.

[99]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. II. Gauge transformations,, J. Math. Phys., 24 (1983), 2595. doi: 10.1063/1.525655.

[100]

S. Smale, On the mathematical foundations of electrical circuit theory,, J. Differential Geometry, 7 (1972), 193.

[101]

J. Śniatycki, Dirac brackets in geometric dynamics,, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 365.

[102]

E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective,, Wiley-Interscience [John Wiley & Sons], (1974).

[103]

K. Sundermeyer, Constrained Dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, volume 169 of Lecture Notes in Physics,, Springer-Verlag, (1982).

[104]

Z. Urban and D. Krupka, Variational sequences in mechanics on Grassmann fibrations,, Acta Appl. Math., 112 (2010), 225. doi: 10.1007/s10440-010-9561-y.

[105]

A. J. van der Schaft, Equations of motion for Hamiltonian systems with constraints,, J. Phys. A, 20 (1987), 3271. doi: 10.1088/0305-4470/20/11/030.

[106]

A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203. doi: 10.1016/S0034-4877(98)80176-6.

[107]

A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225. doi: 10.1016/0034-4877(94)90038-8.

[108]

A. Weinstein, The local structure of Poisson manifolds,, J. Differential Geom., 18 (1983), 523.

[109]

A. Weinstein., Lagrangian mechanics and groupoids., In Mechanics day (Waterloo, (1992), 207.

[110]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems,, J. Geom. Phys., 57 (2006), 133. doi: 10.1016/j.geomphys.2006.02.009.

[111]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures,, J. Geom. Phys., 57 (2006), 209. doi: 10.1016/j.geomphys.2006.02.012.

[112]

D. V. Zenkov, A. M. Bloch and J. E. Marsden, The energy-momentum method for the stability of non-holonomic systems,, Dynam. Stability Systems, 13 (1998), 123. doi: 10.1080/02681119808806257.

[1]

Andrey Tsiganov. Poisson structures for two nonholonomic systems with partially reduced symmetries. Journal of Geometric Mechanics, 2014, 6 (3) : 417-440. doi: 10.3934/jgm.2014.6.417

[2]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[3]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[4]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[5]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[6]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[7]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[8]

Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139

[9]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[10]

Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061

[11]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

[12]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[13]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[14]

Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169

[15]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[16]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[17]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[18]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[19]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[20]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]