2012, 4(3): 313-332. doi: 10.3934/jgm.2012.4.313

The leaf space of a multiplicative foliation

1. 

Section de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Received  November 2010 Revised  October 2011 Published  October 2012

We show that if a smooth multiplicative subbundle $S\subseteq TG$ on a groupoid $G⇉P$ is involutive and satisfies completeness conditions, then its leaf space $G/S$ inherits a groupoid structure over the space of leaves of $TP\cap S$ in $P$.
    As an application, a special class of Dirac groupoids is shown to project by forward Dirac maps to Poisson groupoids.
Citation: M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313-332. doi: 10.3934/jgm.2012.4.313
References:
[1]

A. Coste, P. Dazord and A. Weinstein, Groupoï des symplectiques,, Publications du Département de Mathématiques. Nouvelle Série. A, 2 (1987), 1.

[2]

T. J. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1.

[3]

J. Hilgert and K.-H. Neeb, Lie Groups and Lie Algebras. (Lie-Gruppen und Lie-Algebren.),, Braunschweig: Vieweg. 361 S., (1991).

[4]

B. Z. Iliev, "Handbook of Normal Frames and Coordinates,", Progress in Mathematical Physics 42. Basel: Birkhäuser. xvi+441 pp., 42 (2006).

[5]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, J. Nonlinear Sci., 18 (2008), 221. doi: 10.1007/s00332-007-9012-8.

[6]

M. Jotz and C. Ortiz, Foliated groupoids and their infinitesimal data,, Preprint, (2011).

[7]

M. Jotz, Infinitesimal objects associated to Dirac groupoids and their homogeneous spaces,, Preprint, (2010).

[8]

_______, "Dirac Group(oid)s and Their Homogeneous Spaces,", Ph. D. thesis, (2011).

[9]

_______, Dirac Lie groups, Dirac homogeneous spaces and the Theorem of Drinfel'd,, , (2011).

[10]

M. Jotz, T. S. Ratiu and J. Śniatycki, Singular Dirac reduction,, Trans. Amer. Math. Soc., 363 (2011), 2967. doi: 10.1090/S0002-9947-2011-05220-7.

[11]

M. Jotz, T. Ratiu and M. Zambon, Invariant frames for vector bundles and applications,, Geometriae Dedicata, 158 (2011), 1.

[12]

K. C. H. Mackenzie, "Lie Groupoids and Lie Algebroids in Differential Geometry,", London Mathematical Society Lecture Note Series, 124 (1987). doi: 10.1017/CBO9780511661839.

[13]

_______, Double Lie algebroids and second-order geometry. II,, Adv. Math., 154 (2000), 46. doi: 10.1006/aima.1999.1892.

[14]

_______, "General Theory of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series, 213 (2005).

[15]

I. Moerdijk and J. Mrčun, "Introduction to Foliations and Lie Groupoids,", Cambridge Studies in Advanced Mathematics. 91. Cambridge: Cambridge University Press. 2003. x+173 pp., 91 (2003).

[16]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313. doi: 10.1088/0951-7715/19/6/006.

[17]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics (Boston, 222 (2004).

[18]

C. Ortiz, Multiplicative Dirac structures on Lie groups,, C. R., 346 (2008), 1279. doi: 10.1016/j.crma.2008.10.003.

[19]

_______, "Multiplicative Dirac Structures,", Ph. D. thesis, (2009).

[20]

J. Pradines, Remarque sur le groupoïde cotangent de Weinstein-Dazord,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 557.

[21]

P. Stefan, Accessible sets, orbits, and foliations with singularities,, Proc. London Math. Soc. (3), 29 (1974), 699. doi: 10.1112/plms/s3-29.4.699.

[22]

_______, Integrability of systems of vector fields,, J. London Math. Soc. (2), 21 (1980), 544.

[23]

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions,, Trans. Amer. Math. Soc., 180 (1973), 171. doi: 10.1090/S0002-9947-1973-0321133-2.

[24]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705. doi: 10.2969/jmsj/04040705.

[25]

_______, Lagrangian mechanics and groupoids,, Mechanics day (Waterloo, (1992), 207.

[26]

M. Zambon, Reduction of branes in generalized complex geometry,, J. Symplectic Geom., 6 (2008), 353.

[27]

_______, Submanifolds in poisson geometry: A survey,, Complex and Differential Geometry, 8 (2010), 403.

show all references

References:
[1]

A. Coste, P. Dazord and A. Weinstein, Groupoï des symplectiques,, Publications du Département de Mathématiques. Nouvelle Série. A, 2 (1987), 1.

[2]

T. J. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631. doi: 10.1090/S0002-9947-1990-0998124-1.

[3]

J. Hilgert and K.-H. Neeb, Lie Groups and Lie Algebras. (Lie-Gruppen und Lie-Algebren.),, Braunschweig: Vieweg. 361 S., (1991).

[4]

B. Z. Iliev, "Handbook of Normal Frames and Coordinates,", Progress in Mathematical Physics 42. Basel: Birkhäuser. xvi+441 pp., 42 (2006).

[5]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, J. Nonlinear Sci., 18 (2008), 221. doi: 10.1007/s00332-007-9012-8.

[6]

M. Jotz and C. Ortiz, Foliated groupoids and their infinitesimal data,, Preprint, (2011).

[7]

M. Jotz, Infinitesimal objects associated to Dirac groupoids and their homogeneous spaces,, Preprint, (2010).

[8]

_______, "Dirac Group(oid)s and Their Homogeneous Spaces,", Ph. D. thesis, (2011).

[9]

_______, Dirac Lie groups, Dirac homogeneous spaces and the Theorem of Drinfel'd,, , (2011).

[10]

M. Jotz, T. S. Ratiu and J. Śniatycki, Singular Dirac reduction,, Trans. Amer. Math. Soc., 363 (2011), 2967. doi: 10.1090/S0002-9947-2011-05220-7.

[11]

M. Jotz, T. Ratiu and M. Zambon, Invariant frames for vector bundles and applications,, Geometriae Dedicata, 158 (2011), 1.

[12]

K. C. H. Mackenzie, "Lie Groupoids and Lie Algebroids in Differential Geometry,", London Mathematical Society Lecture Note Series, 124 (1987). doi: 10.1017/CBO9780511661839.

[13]

_______, Double Lie algebroids and second-order geometry. II,, Adv. Math., 154 (2000), 46. doi: 10.1006/aima.1999.1892.

[14]

_______, "General Theory of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series, 213 (2005).

[15]

I. Moerdijk and J. Mrčun, "Introduction to Foliations and Lie Groupoids,", Cambridge Studies in Advanced Mathematics. 91. Cambridge: Cambridge University Press. 2003. x+173 pp., 91 (2003).

[16]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313. doi: 10.1088/0951-7715/19/6/006.

[17]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics (Boston, 222 (2004).

[18]

C. Ortiz, Multiplicative Dirac structures on Lie groups,, C. R., 346 (2008), 1279. doi: 10.1016/j.crma.2008.10.003.

[19]

_______, "Multiplicative Dirac Structures,", Ph. D. thesis, (2009).

[20]

J. Pradines, Remarque sur le groupoïde cotangent de Weinstein-Dazord,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 557.

[21]

P. Stefan, Accessible sets, orbits, and foliations with singularities,, Proc. London Math. Soc. (3), 29 (1974), 699. doi: 10.1112/plms/s3-29.4.699.

[22]

_______, Integrability of systems of vector fields,, J. London Math. Soc. (2), 21 (1980), 544.

[23]

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions,, Trans. Amer. Math. Soc., 180 (1973), 171. doi: 10.1090/S0002-9947-1973-0321133-2.

[24]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705. doi: 10.2969/jmsj/04040705.

[25]

_______, Lagrangian mechanics and groupoids,, Mechanics day (Waterloo, (1992), 207.

[26]

M. Zambon, Reduction of branes in generalized complex geometry,, J. Symplectic Geom., 6 (2008), 353.

[27]

_______, Submanifolds in poisson geometry: A survey,, Complex and Differential Geometry, 8 (2010), 403.

[1]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[2]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[3]

Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53.

[4]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[5]

Mohammad Shafiee. The $2$-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[6]

Nicola Sansonetto, Daniele Sepe. Twisted isotropic realisations of twisted Poisson structures. Journal of Geometric Mechanics, 2013, 5 (2) : 233-256. doi: 10.3934/jgm.2013.5.233

[7]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[8]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[9]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[10]

Andrey Tsiganov. Poisson structures for two nonholonomic systems with partially reduced symmetries. Journal of Geometric Mechanics, 2014, 6 (3) : 417-440. doi: 10.3934/jgm.2014.6.417

[11]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[12]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

[13]

Radu Saghin. Note on homology of expanding foliations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 349-360. doi: 10.3934/dcdss.2009.2.349

[14]

Boris Hasselblatt. Critical regularity of invariant foliations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 931-937. doi: 10.3934/dcds.2002.8.931

[15]

Charles Pugh, Michael Shub, Amie Wilkinson. Hölder foliations, revisited. Journal of Modern Dynamics, 2012, 6 (1) : 79-120. doi: 10.3934/jmd.2012.6.79

[16]

Gabriel Ponce, Ali Tahzibi, Régis Varão. Minimal yet measurable foliations. Journal of Modern Dynamics, 2014, 8 (1) : 93-107. doi: 10.3934/jmd.2014.8.93

[17]

Gennady Bachman. Exponential sums with multiplicative coefficients. Electronic Research Announcements, 1999, 5: 128-135.

[18]

Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537

[19]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[20]

Fernando Alcalde Cuesta, Ana Rechtman. Minimal Følner foliations are amenable. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 685-707. doi: 10.3934/dcds.2011.31.685

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]