June  2011, 3(2): 261-275. doi: 10.3934/jgm.2011.3.261

Euler-Poincaré reduction for systems with configuration space isotropy

1. 

Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC 28723, United States

2. 

Department of Computer Science, University of Toronto, 10 King’s College Road, Room 3302, Toronto, ON, M5S 3G4, Canada

3. 

Department of Mathematics, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5, Canada

Received  February 2010 Revised  June 2011 Published  July 2011

This paper concerns Lagrangian systems with symmetries, near points with configuration space isotropy. Using twisted parametrisations corresponding to phase space slices based at zero points of tangent fibres, we deduce reduced equations of motion, which are a hybrid of the Euler-Poincaré and Euler-Lagrange equations. Further, we state a corresponding variational principle.
Citation: Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Benjamin/Cummings Publishing Co., (1978). Google Scholar

[2]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. on Systems and Control, 45 (2000), 2253. doi: 10.1109/9.895562. Google Scholar

[3]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. on Automatic Control, 46 (2001), 1556. Google Scholar

[4]

H. Cendra, J. E. Marsden and T. Ratiu, "Lagrangian Reduction by Stages,", Memoirs of the American Mathematical Society, 152 (2001). Google Scholar

[5]

R. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems,", Birkhäuser Verlag, (1997). doi: 10.1007/978-3-0348-8891-2. Google Scholar

[6]

V. Guillemin and S. Sternberg, A normal form for the moment map,, In, 6 (1984). Google Scholar

[7]

J. J. Duistermaat and J. A. C. Kolk, "Lie Groups,", Springer-Verlag, (2000). doi: 10.1007/978-3-642-56936-4. Google Scholar

[8]

D. D. Holm, T. Schmah and C. Stoica, "Geometric Mechanics and Symmetry: from Finite to Infinite Dimensions,", Oxford Texts in Applied and Engineering Mathematics, 12 (2009). Google Scholar

[9]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637. doi: 10.1088/0951-7715/11/6/012. Google Scholar

[10]

D. Lewis, Lagrangian block diagonalization,, Journal of Dynamics and Differential Equations, 4 (1992), 1. doi: 10.1007/BF01048153. Google Scholar

[11]

C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique,, Rendiconti del Seminario Matematico, 43 (1985), 227. Google Scholar

[12]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992). Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition., Texts in Applied Mathematics, 17 (1999). Google Scholar

[14]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Math. Phys., 5 (1974), 121. doi: 10.1016/0034-4877(74)90021-4. Google Scholar

[15]

J. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553. doi: 10.1016/S0764-4442(99)80389-9. Google Scholar

[16]

J. Montaldi and R. M. Roberts, Relative Equilibria of Molecules,, J. Nonlinear Sci., 9 (1999), 53. doi: 10.1007/s003329900064. Google Scholar

[17]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693. doi: 10.1088/0951-7715/12/3/315. Google Scholar

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics, 222 (2004). Google Scholar

[19]

G. W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111. doi: 10.1016/0393-0440(92)90015-S. Google Scholar

[20]

R. Palais, On the existence of slices for actions of non-compact Lie groups,, Ann. Math., 73 (1961), 295. doi: 10.2307/1970335. Google Scholar

[21]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853. doi: 10.1088/0951-7715/19/4/005. Google Scholar

[22]

R. M. Roberts and M. E. R. de Sousa Dias, Bifurcations from relative equilibria of Hamiltonian systems,, Nonlinearity, 10 (1997), 1719. doi: 10.1088/0951-7715/10/6/015. Google Scholar

[23]

M. Roberts, T. Schmah and C. Stoica, Relative equilibria in systems with configuration space isotropy,, J. Geom. Phys., 56 (2006), 762. doi: 10.1016/j.geomphys.2005.04.017. Google Scholar

[24]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Ann. of Math., 134 (1991), 375. doi: 10.2307/2944350. Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Benjamin/Cummings Publishing Co., (1978). Google Scholar

[2]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. on Systems and Control, 45 (2000), 2253. doi: 10.1109/9.895562. Google Scholar

[3]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. on Automatic Control, 46 (2001), 1556. Google Scholar

[4]

H. Cendra, J. E. Marsden and T. Ratiu, "Lagrangian Reduction by Stages,", Memoirs of the American Mathematical Society, 152 (2001). Google Scholar

[5]

R. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems,", Birkhäuser Verlag, (1997). doi: 10.1007/978-3-0348-8891-2. Google Scholar

[6]

V. Guillemin and S. Sternberg, A normal form for the moment map,, In, 6 (1984). Google Scholar

[7]

J. J. Duistermaat and J. A. C. Kolk, "Lie Groups,", Springer-Verlag, (2000). doi: 10.1007/978-3-642-56936-4. Google Scholar

[8]

D. D. Holm, T. Schmah and C. Stoica, "Geometric Mechanics and Symmetry: from Finite to Infinite Dimensions,", Oxford Texts in Applied and Engineering Mathematics, 12 (2009). Google Scholar

[9]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637. doi: 10.1088/0951-7715/11/6/012. Google Scholar

[10]

D. Lewis, Lagrangian block diagonalization,, Journal of Dynamics and Differential Equations, 4 (1992), 1. doi: 10.1007/BF01048153. Google Scholar

[11]

C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique,, Rendiconti del Seminario Matematico, 43 (1985), 227. Google Scholar

[12]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992). Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition., Texts in Applied Mathematics, 17 (1999). Google Scholar

[14]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Math. Phys., 5 (1974), 121. doi: 10.1016/0034-4877(74)90021-4. Google Scholar

[15]

J. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553. doi: 10.1016/S0764-4442(99)80389-9. Google Scholar

[16]

J. Montaldi and R. M. Roberts, Relative Equilibria of Molecules,, J. Nonlinear Sci., 9 (1999), 53. doi: 10.1007/s003329900064. Google Scholar

[17]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693. doi: 10.1088/0951-7715/12/3/315. Google Scholar

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics, 222 (2004). Google Scholar

[19]

G. W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111. doi: 10.1016/0393-0440(92)90015-S. Google Scholar

[20]

R. Palais, On the existence of slices for actions of non-compact Lie groups,, Ann. Math., 73 (1961), 295. doi: 10.2307/1970335. Google Scholar

[21]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853. doi: 10.1088/0951-7715/19/4/005. Google Scholar

[22]

R. M. Roberts and M. E. R. de Sousa Dias, Bifurcations from relative equilibria of Hamiltonian systems,, Nonlinearity, 10 (1997), 1719. doi: 10.1088/0951-7715/10/6/015. Google Scholar

[23]

M. Roberts, T. Schmah and C. Stoica, Relative equilibria in systems with configuration space isotropy,, J. Geom. Phys., 56 (2006), 762. doi: 10.1016/j.geomphys.2005.04.017. Google Scholar

[24]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Ann. of Math., 134 (1991), 375. doi: 10.2307/2944350. Google Scholar

[1]

Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063

[2]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[3]

Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001

[4]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[5]

William Clark, Anthony Bloch, Leonardo Colombo. A Poincaré-Bendixson theorem for hybrid systems. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019028

[6]

Franco Flandoli, Dejun Luo. Euler-Lagrangian approach to 3D stochastic Euler equations. Journal of Geometric Mechanics, 2019, 11 (2) : 153-165. doi: 10.3934/jgm.2019008

[7]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[8]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[9]

Menita Carozza, Jan Kristensen, Antonia Passarelli di Napoli. On the validity of the Euler-Lagrange system. Communications on Pure & Applied Analysis, 2015, 14 (1) : 51-62. doi: 10.3934/cpaa.2015.14.51

[10]

Harish S. Bhat, Razvan C. Fetecau. Lagrangian averaging for the 1D compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 979-1000. doi: 10.3934/dcdsb.2006.6.979

[11]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[12]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[13]

D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495

[14]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[15]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[16]

V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901

[17]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[18]

Marcel Oliver. The Lagrangian averaged Euler equations as the short-time inviscid limit of the Navier–Stokes equations with Besov class data in $\mathbb{R}^2$. Communications on Pure & Applied Analysis, 2002, 1 (2) : 221-235. doi: 10.3934/cpaa.2002.1.221

[19]

Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15

[20]

Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]