June  2011, 3(2): 145-196. doi: 10.3934/jgm.2011.3.145

Lyapunov constraints and global asymptotic stabilization

1. 

Centro Atmico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche, and CONICET, Argentina

2. 

Control and Dynamical Systems 107-81, California Institute of Technology, Pasadena, CA 91125, United States

3. 

United Technologies Research Center, East Hartford, CT 06118, United States

Received  October 2010 Revised  June 2011 Published  July 2011

In this paper, we develop a method for stabilizing underactuated mechanical systems by imposing kinematic constraints (more precisely Lyapunov constraints). If these constraints can be implemented by actuators, i.e., if there exists a related constraint force exerted by the actuators, then the existence of a Lyapunov function for the system under consideration is guaranteed. We establish necessary and sufficient conditions for the existence and uniqueness of constraint forces. These conditions give rise to a system of PDEs whose solution is the required Lyapunov function. To illustrate our results, we solve these PDEs for certain underactuated mechanical systems of interest such as the inertia wheel-pendulum, the inverted pendulum on a cart system and the ball and beam system.
Citation: Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145
References:
[1]

R. Abraham and J. E. Marsden, "Foundation of Mechanics,", New York, (1985). Google Scholar

[2]

V. I. Arnold, "Mathematical Models in Classical Mechanics,", Graduate Texts in Mathematics, 60 (1978). Google Scholar

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,", volume 24 of Interdisciplinary Applied Mathematics, (2003). Google Scholar

[4]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. Automat. Control, 46 (2001), 1556. doi: 10.1109/9.956051. Google Scholar

[5]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. Automat. Control, 45 (2000), 2253. doi: 10.1109/9.895562. Google Scholar

[6]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry," 2nd edition, Pure and Applied Mathematics, 120,, Academic Press, (1986). Google Scholar

[7]

F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems," Texts in Applied Mathematics, 49,, Springer-Verlag, (2005). Google Scholar

[8]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006), 2209. doi: 10.1063/1.2165797. Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007). Google Scholar

[10]

H. Cendra, A. Ibort, M. de León and D. Martin de Diego, A generalization of Chetaev's principle for a class of higher order non-holonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245. Google Scholar

[11]

D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems,", \emph{ESIAM: Control, (2001). Google Scholar

[12]

B. Gharesifard, A. D. Lewis and A.-R. Mansouri, A geometric framework for stabilization by energy shaping: Sufficient conditions for existence of solutions,, Communications for Information and Systems, 8 (2008), 353. Google Scholar

[13]

S. Grillo, "Sistemas Noholónomos Generalizados,", Ph.D thesis, (2007). Google Scholar

[14]

S. Grillo, Higher order constrained Hamiltonian systems,, J. Math. Phys., 50 (2009). Google Scholar

[15]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, International Journal of Geometric Methods in Modern Physics, (2010). doi: 10.1142/S0219887810004580. Google Scholar

[16]

H. Khalil, "Nonlinear Systems,", Upper Saddle River NJ, (1996). Google Scholar

[17]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", New York, (1963). Google Scholar

[18]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Geometrical Structures for Physical Theories, II (Vietri, 1996),, Rend. Sem. Mat. Univ. Pol. Torino \textbf{54} (1996), 54 (1996), 353. Google Scholar

[19]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994). Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications,", New York, (2001). Google Scholar

[21]

R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment,, IEEE Trans. Aut. Control, 47 (2002), 1281. doi: 10.1109/TAC.2002.800770. Google Scholar

[22]

D. Pérez, Sistemas noholónomos generalizados y su aplicación a la teoría de control automático mediante vínculos cinemáticos,, Proyecto Integrador, (2006). Google Scholar

[23]

D. Pérez, "Sistemas con vínculos de orden superior y su aplicación a la teoría de control automático,", Master thesis, (2007). Google Scholar

[24]

J. Rayleigh, "The Theory of Sound," 2nd edition,, Dover Publications, (1945). Google Scholar

[25]

A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Transactions on Automatic Control, 50 (2005), 1164. doi: 10.1109/TAC.2005.852568. Google Scholar

[26]

E. Sontag, "Mathematical Control Theory," Texts in Applied Mathematics, 6,, Springer-Verlag, (1998). Google Scholar

[27]

M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the inertia wheel pendulum,, Automatica, 37 (2001), 1845. doi: 10.1016/S0005-1098(01)00145-5. Google Scholar

[28]

E. T. Whittaker, "A Treatise on The Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1937). Google Scholar

[29]

C. Woolsey, C. Reddy, A. Bloch, D. Chang, N. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation,, European Journal of Control, 10 (2004), 478. doi: 10.3166/ejc.10.478-496. Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundation of Mechanics,", New York, (1985). Google Scholar

[2]

V. I. Arnold, "Mathematical Models in Classical Mechanics,", Graduate Texts in Mathematics, 60 (1978). Google Scholar

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,", volume 24 of Interdisciplinary Applied Mathematics, (2003). Google Scholar

[4]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. Automat. Control, 46 (2001), 1556. doi: 10.1109/9.956051. Google Scholar

[5]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. Automat. Control, 45 (2000), 2253. doi: 10.1109/9.895562. Google Scholar

[6]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry," 2nd edition, Pure and Applied Mathematics, 120,, Academic Press, (1986). Google Scholar

[7]

F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems," Texts in Applied Mathematics, 49,, Springer-Verlag, (2005). Google Scholar

[8]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006), 2209. doi: 10.1063/1.2165797. Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007). Google Scholar

[10]

H. Cendra, A. Ibort, M. de León and D. Martin de Diego, A generalization of Chetaev's principle for a class of higher order non-holonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245. Google Scholar

[11]

D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems,", \emph{ESIAM: Control, (2001). Google Scholar

[12]

B. Gharesifard, A. D. Lewis and A.-R. Mansouri, A geometric framework for stabilization by energy shaping: Sufficient conditions for existence of solutions,, Communications for Information and Systems, 8 (2008), 353. Google Scholar

[13]

S. Grillo, "Sistemas Noholónomos Generalizados,", Ph.D thesis, (2007). Google Scholar

[14]

S. Grillo, Higher order constrained Hamiltonian systems,, J. Math. Phys., 50 (2009). Google Scholar

[15]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, International Journal of Geometric Methods in Modern Physics, (2010). doi: 10.1142/S0219887810004580. Google Scholar

[16]

H. Khalil, "Nonlinear Systems,", Upper Saddle River NJ, (1996). Google Scholar

[17]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", New York, (1963). Google Scholar

[18]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Geometrical Structures for Physical Theories, II (Vietri, 1996),, Rend. Sem. Mat. Univ. Pol. Torino \textbf{54} (1996), 54 (1996), 353. Google Scholar

[19]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994). Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications,", New York, (2001). Google Scholar

[21]

R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment,, IEEE Trans. Aut. Control, 47 (2002), 1281. doi: 10.1109/TAC.2002.800770. Google Scholar

[22]

D. Pérez, Sistemas noholónomos generalizados y su aplicación a la teoría de control automático mediante vínculos cinemáticos,, Proyecto Integrador, (2006). Google Scholar

[23]

D. Pérez, "Sistemas con vínculos de orden superior y su aplicación a la teoría de control automático,", Master thesis, (2007). Google Scholar

[24]

J. Rayleigh, "The Theory of Sound," 2nd edition,, Dover Publications, (1945). Google Scholar

[25]

A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Transactions on Automatic Control, 50 (2005), 1164. doi: 10.1109/TAC.2005.852568. Google Scholar

[26]

E. Sontag, "Mathematical Control Theory," Texts in Applied Mathematics, 6,, Springer-Verlag, (1998). Google Scholar

[27]

M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the inertia wheel pendulum,, Automatica, 37 (2001), 1845. doi: 10.1016/S0005-1098(01)00145-5. Google Scholar

[28]

E. T. Whittaker, "A Treatise on The Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1937). Google Scholar

[29]

C. Woolsey, C. Reddy, A. Bloch, D. Chang, N. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation,, European Journal of Control, 10 (2004), 478. doi: 10.3166/ejc.10.478-496. Google Scholar

[1]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130

[2]

Sergio Grillo, Leandro Salomone, Marcela Zuccalli. On the relationship between the energy shaping and the Lyapunov constraint based methods. Journal of Geometric Mechanics, 2017, 9 (4) : 459-486. doi: 10.3934/jgm.2017018

[3]

Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1

[4]

B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217

[5]

Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603

[6]

Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116

[7]

Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222

[8]

John R. Graef, János Karsai. Oscillation and nonoscillation in nonlinear impulsive systems with increasing energy. Conference Publications, 2001, 2001 (Special) : 166-173. doi: 10.3934/proc.2001.2001.166

[9]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[10]

Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337

[11]

Janusz Grabowski, Katarzyna Grabowska, Paweł Urbański. Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings. Journal of Geometric Mechanics, 2014, 6 (4) : 503-526. doi: 10.3934/jgm.2014.6.503

[12]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[13]

M. Motta, C. Sartori. Exit time problems for nonlinear unbounded control systems. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 137-156. doi: 10.3934/dcds.1999.5.137

[14]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[15]

Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585

[16]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[17]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[18]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[19]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[20]

Wei Wang. Closed trajectories on symmetric convex Hamiltonian energy surfaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 679-701. doi: 10.3934/dcds.2012.32.679

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]