2010, 2(4): 343-374. doi: 10.3934/jgm.2010.2.343

Variational integrators for discrete Lagrange problems

1. 

Department of Mathematics, University of Salamanca, Salamanca 37008, Spain

2. 

Department of Applied Mathematics, University of Salamanca, Salamanca 37008, Spain

3. 

CINAMIL, Academia Militar, Amadora 2720-113, Portugal

Received  August 2010 Revised  December 2010 Published  January 2011

A discrete Lagrange problem is defined as a discrete Lagrangian system endowed with a constraint submanifold in the space of 1-jets of the discrete fibred manifold that configures the system. After defining the concepts of admissible section and infinitesimal admissible variation, the objective of these problems is to find admissible sections that are critical for the Lagrangian of the system with respect to the infinitesimal admissible variations. For admissible sections satisfying a certain regularity condition, we prove that critical sections are the solutions of an extended unconstrained discrete variational problem canonically associated to the problem of Lagrange (discrete Lagrange multiplier rule). Next, we define the concept of Cartan 1-form, establish a Noether theory for symmetries and introduce a notion of "constrained variational integrator" that we characterize through a Cartan equation ensuring its symplecticity. Under a certain regularity condition of the problem of Lagrange, we prove the existence and uniqueness of this kind of integrators in the neighborhood of a critical section, showing then that such integrators can be constructed from a generating function of the second class in the sense of symplectic geometry. Finally, the whole theory is illustrated with three elementary examples.
Citation: Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343
References:
[1]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, "Dynamical Systems III,", Encyclopaedia of Mathematical Sciences, 3 (1988).

[2]

R. Benito and D. Martín de Diego, Discrete vakonomic mechanics,, J. Math. Phys., 46 (2005). doi: 10.1063/1.2008214.

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,'', Interdisciplinary Applied Mathematics, 24 (2003).

[4]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints,, J. Geom. Phys., 18 (1996), 295. doi: 10.1016/0393-0440(95)00016-X.

[5]

J.-B. Chen, H.-Y. Guo and K. Wu, Total variation and variational symplectic-energy-momentum integrators,, preprint, ().

[6]

J.-B. Chen, H.-Y. Guo and K. Wu, Discrete total variation calculus and Lee's discrete mechanics,, Appl. Math. Comput., 177 (2006), 226. doi: 10.1016/j.amc.2005.11.002.

[7]

J. Cortés, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lect. Notes in Math. \textbf{1793}, 1793 (2002).

[8]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems,, J. Geom. Phys., 56 (2006), 571. doi: 10.1016/j.geomphys.2005.04.002.

[9]

P. L. García and C. Rodrigo, Cartan forms and second variation for constrained variational problems,, Proceedings of the VII International Conference on Geometry, (2006), 140.

[10]

H. Goldstein, "Classical Mechanics,'', Addison-Wesley Series in Physics, (1980).

[11]

X. Gràcia, J. Marín Solano and M. C. Muñoz Lecanda, Some geometric aspects of variational calculus in constrained systems,, Rep. Math. Phys., 51 (2003), 127. doi: 10.1016/S0034-4877(03)80006-X.

[12]

V. M. Guibout and A. Bloch, Discrete variational principles and Hamilton-Jacobi theory for mechanical systems and optimal control problems,, e-print ccsd-00002863, (): 1.

[13]

L. Hsu, Calculus of variations via the Griffiths formalism,, J. Diff. Geom., 36 (1992), 551.

[14]

T. D. Lee, Can time be a discrete dynamical variable?,, Phys. Lett. B, 122 (1983). doi: 10.1016/0370-2693(83)90687-1.

[15]

M. de León, D. Martín de Diego and A. Santamaría Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004).

[16]

M. de León, D. Martín de Diego and A. Santamaría Merino, Discrete variational integrators and optimal control theory,, Advances in Computational Mathematics, 26 (2006), 251.

[17]

M. de León, J. C. Marrero and D. Martín de Diego, Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach,, J. Geom. Phys., 35 (2000), 126. doi: 10.1016/S0393-0440(00)00004-8.

[18]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators and nonlinear PDEs,, Comm. in Math. Phys., 199 (1998), 351.

[19]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 317. doi: 10.1017/S096249290100006X.

[20]

S. Martínez, J. Cortés and M. de León, Symmetries in vakonomic dynamics: Applications to optimal control,, J. Geom. Phys., 38 (2001), 343. doi: 10.1016/S0393-0440(00)00069-3.

[21]

P. Piccione and D. V. Tausk, Lagrangian and Hamiltonian formalism for constrained variational problems,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1417.

[22]

J. Vankerschaver, F. Cantrijn, M. de León and D. Martín de Diego, Geometric aspects of nonholonomic field theories,, Rep. Math. Phys., 56 (2005), 387. doi: 10.1016/S0034-4877(05)80093-X.

[23]

J. Vankerschaver and F. Cantrijn, Discrete Lagrangian field theories on Lie groupoids,, J. Geom. Phys., 57 (2007), 665. doi: 10.1016/j.geomphys.2006.05.006.

[24]

M. West, "Variational Integrators,'', Ph.D. Thesis, (2004).

show all references

References:
[1]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, "Dynamical Systems III,", Encyclopaedia of Mathematical Sciences, 3 (1988).

[2]

R. Benito and D. Martín de Diego, Discrete vakonomic mechanics,, J. Math. Phys., 46 (2005). doi: 10.1063/1.2008214.

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,'', Interdisciplinary Applied Mathematics, 24 (2003).

[4]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints,, J. Geom. Phys., 18 (1996), 295. doi: 10.1016/0393-0440(95)00016-X.

[5]

J.-B. Chen, H.-Y. Guo and K. Wu, Total variation and variational symplectic-energy-momentum integrators,, preprint, ().

[6]

J.-B. Chen, H.-Y. Guo and K. Wu, Discrete total variation calculus and Lee's discrete mechanics,, Appl. Math. Comput., 177 (2006), 226. doi: 10.1016/j.amc.2005.11.002.

[7]

J. Cortés, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lect. Notes in Math. \textbf{1793}, 1793 (2002).

[8]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems,, J. Geom. Phys., 56 (2006), 571. doi: 10.1016/j.geomphys.2005.04.002.

[9]

P. L. García and C. Rodrigo, Cartan forms and second variation for constrained variational problems,, Proceedings of the VII International Conference on Geometry, (2006), 140.

[10]

H. Goldstein, "Classical Mechanics,'', Addison-Wesley Series in Physics, (1980).

[11]

X. Gràcia, J. Marín Solano and M. C. Muñoz Lecanda, Some geometric aspects of variational calculus in constrained systems,, Rep. Math. Phys., 51 (2003), 127. doi: 10.1016/S0034-4877(03)80006-X.

[12]

V. M. Guibout and A. Bloch, Discrete variational principles and Hamilton-Jacobi theory for mechanical systems and optimal control problems,, e-print ccsd-00002863, (): 1.

[13]

L. Hsu, Calculus of variations via the Griffiths formalism,, J. Diff. Geom., 36 (1992), 551.

[14]

T. D. Lee, Can time be a discrete dynamical variable?,, Phys. Lett. B, 122 (1983). doi: 10.1016/0370-2693(83)90687-1.

[15]

M. de León, D. Martín de Diego and A. Santamaría Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004).

[16]

M. de León, D. Martín de Diego and A. Santamaría Merino, Discrete variational integrators and optimal control theory,, Advances in Computational Mathematics, 26 (2006), 251.

[17]

M. de León, J. C. Marrero and D. Martín de Diego, Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach,, J. Geom. Phys., 35 (2000), 126. doi: 10.1016/S0393-0440(00)00004-8.

[18]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators and nonlinear PDEs,, Comm. in Math. Phys., 199 (1998), 351.

[19]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 317. doi: 10.1017/S096249290100006X.

[20]

S. Martínez, J. Cortés and M. de León, Symmetries in vakonomic dynamics: Applications to optimal control,, J. Geom. Phys., 38 (2001), 343. doi: 10.1016/S0393-0440(00)00069-3.

[21]

P. Piccione and D. V. Tausk, Lagrangian and Hamiltonian formalism for constrained variational problems,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1417.

[22]

J. Vankerschaver, F. Cantrijn, M. de León and D. Martín de Diego, Geometric aspects of nonholonomic field theories,, Rep. Math. Phys., 56 (2005), 387. doi: 10.1016/S0034-4877(05)80093-X.

[23]

J. Vankerschaver and F. Cantrijn, Discrete Lagrangian field theories on Lie groupoids,, J. Geom. Phys., 57 (2007), 665. doi: 10.1016/j.geomphys.2006.05.006.

[24]

M. West, "Variational Integrators,'', Ph.D. Thesis, (2004).

[1]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[2]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[3]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[4]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[5]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[6]

Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229

[7]

Santos González, Llorenç Huguet, Consuelo Martínez, Hugo Villafañe. Discrete logarithm like problems and linear recurring sequences. Advances in Mathematics of Communications, 2013, 7 (2) : 187-195. doi: 10.3934/amc.2013.7.187

[8]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks & Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[9]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[10]

Krzysztof Fujarewicz. Estimation of initial functions for systems with delays from discrete measurements. Mathematical Biosciences & Engineering, 2017, 14 (1) : 165-178. doi: 10.3934/mbe.2017011

[11]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[12]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[13]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[14]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[15]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[16]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

[17]

Regina Sandra Burachik, Alex Rubinov. On the absence of duality gap for Lagrange-type functions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 33-38. doi: 10.3934/jimo.2005.1.33

[18]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[19]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[20]

Tanka Nath Dhamala. A survey on models and algorithms for discrete evacuation planning network problems. Journal of Industrial & Management Optimization, 2015, 11 (1) : 265-289. doi: 10.3934/jimo.2015.11.265

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (2)

[Back to Top]