July 2018, 5(3): 189-201. doi: 10.3934/jdg.2018012

Imperfectly competitive markets, trade unions and inflation: Do imperfectly competitive markets transmit more inflation than perfectly competitive ones? A theoretical appraisal

Universidad Carlos Ⅲ, Madrid, Spain

Received  February 2018 Revised  March 2018 Published  May 2018

In this paper we study the theoretical plausibility of the conjecture that inflation arises because imperfectly competitive markets (ICM in the sequel) translate cost pushes in large price increases. We define two different measures of inflation transmission. We compared these measures in several models of ICM and in perfectly competitive markets (PCM in the sequel). In each case we find a necessary and sufficient condition for an ICM to transmit more inflation -according to the two measures-than that transmitted by a PCM.

Citation: Luis C. Corchón. Imperfectly competitive markets, trade unions and inflation: Do imperfectly competitive markets transmit more inflation than perfectly competitive ones? A theoretical appraisal. Journal of Dynamics & Games, 2018, 5 (3) : 189-201. doi: 10.3934/jdg.2018012
References:
[1]

J. BulowJ. Geanakoplos and P. Klemperer, Multimarket oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511. doi: 10.1086/261312.

[2]

D. Carlton, Chapter 15 of Handbood of Industrial Organization, (1989), 909-946.

[3]

A. Dixit and J. Stiglitz, Monopolistic competition and optimum productivity diversity, American Economic Review, 67 (1977), 297-308.

[4]

O. Hart, A model of imperfect compeition with Keynesian features, Quarterly Journal of Economics, 97 (1982), 109-138.

[5]

J. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162. doi: 10.2307/1907266.

[6]

M. Salinger, Tobin's q, unioniziton and the concentration-profits relationship, Rand Journal of Economics, 15 (1984), 159-170.

[7]

S. Salop, Monopolistic competition with outside goods, The Bell Journal of Economics, 10 (1979), 141-156. doi: 10.2307/3003323.

[8]

T. Scitovsky, Market power and inflation, Econometrica, 45 (1978), 221-233. doi: 10.2307/2553069.

[9]

M. Spence, Product selection, fixed costs and monopolistic competition, Review of Economic Studies, 43 (1976), 217-235. doi: 10.2307/2297319.

[10]

P. A. Zaleski, Industry concentration and the transmission of cost-push inflation: evidence from the 1974 OPEC oil crises, Journal of Economics and Business, 44 (1992), 135-141. doi: 10.1016/0148-6195(92)90012-Y.

show all references

References:
[1]

J. BulowJ. Geanakoplos and P. Klemperer, Multimarket oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511. doi: 10.1086/261312.

[2]

D. Carlton, Chapter 15 of Handbood of Industrial Organization, (1989), 909-946.

[3]

A. Dixit and J. Stiglitz, Monopolistic competition and optimum productivity diversity, American Economic Review, 67 (1977), 297-308.

[4]

O. Hart, A model of imperfect compeition with Keynesian features, Quarterly Journal of Economics, 97 (1982), 109-138.

[5]

J. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162. doi: 10.2307/1907266.

[6]

M. Salinger, Tobin's q, unioniziton and the concentration-profits relationship, Rand Journal of Economics, 15 (1984), 159-170.

[7]

S. Salop, Monopolistic competition with outside goods, The Bell Journal of Economics, 10 (1979), 141-156. doi: 10.2307/3003323.

[8]

T. Scitovsky, Market power and inflation, Econometrica, 45 (1978), 221-233. doi: 10.2307/2553069.

[9]

M. Spence, Product selection, fixed costs and monopolistic competition, Review of Economic Studies, 43 (1976), 217-235. doi: 10.2307/2297319.

[10]

P. A. Zaleski, Industry concentration and the transmission of cost-push inflation: evidence from the 1974 OPEC oil crises, Journal of Economics and Business, 44 (1992), 135-141. doi: 10.1016/0148-6195(92)90012-Y.

Figure 1.  Inflationary Sensitivity of the Cournot Equilibrium Given n.
Figure 2.  Inflationary Elasticity of the Cournot Equilibrium Given n.
Figure 3.  Inflationary Elasticity of the Cournot Equilibrium with free entry.
Figure 4.  Theorem 3.1
[1]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[2]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[3]

S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999

[4]

C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189

[5]

Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187

[6]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[7]

Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011

[8]

Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050

[9]

Mathias Staudigl, Jan-Henrik Steg. On repeated games with imperfect public monitoring: From discrete to continuous time. Journal of Dynamics & Games, 2017, 4 (1) : 1-23. doi: 10.3934/jdg.2017001

[10]

Bo Zheng, Wenliang Guo, Linchao Hu, Mugen Huang, Jianshe Yu. Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Mathematical Biosciences & Engineering, 2018, 15 (2) : 523-541. doi: 10.3934/mbe.2018024

[11]

Biswajit Sarkar, Bimal Kumar Sett, Sumon Sarkar. Optimal production run time and inspection errors in an imperfect production system with warranty. Journal of Industrial & Management Optimization, 2018, 14 (1) : 267-282. doi: 10.3934/jimo.2017046

[12]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[13]

Ata Allah Taleizadeh, Hadi Samimi, Biswajit Sarkar, Babak Mohammadi. Stochastic machine breakdown and discrete delivery in an imperfect inventory-production system. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1511-1535. doi: 10.3934/jimo.2017005

[14]

Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485-512. doi: 10.3934/mbe.2006.3.485

[15]

Francesco Salvarani, Gabriel Turinici. Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection. Mathematical Biosciences & Engineering, 2018, 15 (3) : 629-652. doi: 10.3934/mbe.2018028

[16]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[17]

Daozhou Gao, Xing Liang. A competition-diffusion system with a refuge. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 435-454. doi: 10.3934/dcdsb.2007.8.435

[18]

Georg Hetzer, Wenxian Shen. Two species competition with an inhibitor involved. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 39-57. doi: 10.3934/dcds.2005.12.39

[19]

Nancy Azer, P. van den Driessche. Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences & Engineering, 2006, 3 (2) : 283-296. doi: 10.3934/mbe.2006.3.283

[20]

Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099

 Impact Factor: 

Metrics

  • PDF downloads (39)
  • HTML views (271)
  • Cited by (0)

Other articles
by authors

[Back to Top]