2015, 2(1): 103-115. doi: 10.3934/jdg.2015.2.103

Reversibility and oscillations in zero-sum discounted stochastic games

1. 

Sorbonne Universités, UPMC Univ Paris 06, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Univ Paris Diderot, Sorbonne Paris Cité, F-75005, Paris, France

2. 

Université Paris-Dauphine, CEREMADE, Place du Maréchal De Lattre de Tassigny, 75775 Paris cedex 16, France

Received  November 2014 Revised  January 2015 Published  June 2015

We show that by coupling two well-behaved exit-time problems one can construct two-person zero-sum dynamic games having oscillating discounted values. This unifies and generalizes recent examples of stochastic games with finite state space, due to Vigeral (2013) and Ziliotto (2013).
Citation: Sylvain Sorin, Guillaume Vigeral. Reversibility and oscillations in zero-sum discounted stochastic games. Journal of Dynamics & Games, 2015, 2 (1) : 103-115. doi: 10.3934/jdg.2015.2.103
References:
[1]

T. Bewley and E. Kohlberg, On stochastic games with stationary optimal strategies,, Mathematics of Operations Research, 3 (1978), 104. doi: 10.1287/moor.3.2.104.

[2]

J. Bolte, S. Gaubert and G. Vigeral, Definable zero-sum stochastic games,, Mathematics of Operation Research, 40 (2015), 171. doi: 10.1287/moor.2014.0666.

[3]

G. Grimmett and D. Stirzaker, Probability and Random Processes,, Oxford University Press, (2001).

[4]

R. Laraki, Explicit formulas for repeated games with absorbing states,, International Journal of Game Theory, 39 (2010), 53. doi: 10.1007/s00182-009-0193-2.

[5]

J.-F. Mertens, A. Neyman and D. Rosenberg, Absorbing games with compact action spaces,, Mathematics of Operation Research, 34 (2009), 257. doi: 10.1287/moor.1080.0372.

[6]

J.-F. Mertens, S. Sorin and S. Zamir, Repeated Games,, Cambridge University Press, (2015).

[7]

A. Neyman, Stochastic games and nonexpansive maps,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 397. doi: 10.1007/978-94-010-0189-2_26.

[8]

D. Rosenberg and S. Sorin, An operator approach to zero-sum repeated games,, Israel Journal of Mathematics, 121 (2001), 221. doi: 10.1007/BF02802505.

[9]

S. Sorin, A First Course on Zero-SumRepeated Games,, Springer-Verlag, (2002).

[10]

S. Sorin, The operator approach to zero-sum stochastic games,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 417.

[11]

S. Sorin and G. Vigeral, Existence of the limit value of two person zero-sum discounted repeated games via comparison theorems,, Journal of Opimization Theory and Applications, 157 (2013), 564. doi: 10.1007/s10957-012-0193-4.

[12]

G. Vigeral, A zero-sum stochastic game with compact action sets and no asymptotic value,, Dynamic Games and Applications, 3 (2013), 172. doi: 10.1007/s13235-013-0073-z.

[13]

B. Ziliotto, Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture maxmin=$\lim v_n$,, to appear in Annals of Probability, (2013).

show all references

References:
[1]

T. Bewley and E. Kohlberg, On stochastic games with stationary optimal strategies,, Mathematics of Operations Research, 3 (1978), 104. doi: 10.1287/moor.3.2.104.

[2]

J. Bolte, S. Gaubert and G. Vigeral, Definable zero-sum stochastic games,, Mathematics of Operation Research, 40 (2015), 171. doi: 10.1287/moor.2014.0666.

[3]

G. Grimmett and D. Stirzaker, Probability and Random Processes,, Oxford University Press, (2001).

[4]

R. Laraki, Explicit formulas for repeated games with absorbing states,, International Journal of Game Theory, 39 (2010), 53. doi: 10.1007/s00182-009-0193-2.

[5]

J.-F. Mertens, A. Neyman and D. Rosenberg, Absorbing games with compact action spaces,, Mathematics of Operation Research, 34 (2009), 257. doi: 10.1287/moor.1080.0372.

[6]

J.-F. Mertens, S. Sorin and S. Zamir, Repeated Games,, Cambridge University Press, (2015).

[7]

A. Neyman, Stochastic games and nonexpansive maps,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 397. doi: 10.1007/978-94-010-0189-2_26.

[8]

D. Rosenberg and S. Sorin, An operator approach to zero-sum repeated games,, Israel Journal of Mathematics, 121 (2001), 221. doi: 10.1007/BF02802505.

[9]

S. Sorin, A First Course on Zero-SumRepeated Games,, Springer-Verlag, (2002).

[10]

S. Sorin, The operator approach to zero-sum stochastic games,, in Stochastic Games and Applications (eds. A. Neyman and S. Sorin), (2003), 417.

[11]

S. Sorin and G. Vigeral, Existence of the limit value of two person zero-sum discounted repeated games via comparison theorems,, Journal of Opimization Theory and Applications, 157 (2013), 564. doi: 10.1007/s10957-012-0193-4.

[12]

G. Vigeral, A zero-sum stochastic game with compact action sets and no asymptotic value,, Dynamic Games and Applications, 3 (2013), 172. doi: 10.1007/s13235-013-0073-z.

[13]

B. Ziliotto, Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture maxmin=$\lim v_n$,, to appear in Annals of Probability, (2013).

[1]

Xiangxiang Huang, Xianping Guo, Jianping Peng. A probability criterion for zero-sum stochastic games. Journal of Dynamics & Games, 2017, 4 (4) : 369-383. doi: 10.3934/jdg.2017020

[2]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics & Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

[3]

Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics & Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002

[4]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. Ergodicity conditions for zero-sum games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3901-3931. doi: 10.3934/dcds.2015.35.3901

[5]

Alexander J. Zaslavski. Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. Journal of Dynamics & Games, 2014, 1 (2) : 299-330. doi: 10.3934/jdg.2014.1.299

[6]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[7]

Fernando Luque-Vásquez, J. Adolfo Minjárez-Sosa. Average optimal strategies for zero-sum Markov games with poorly known payoff function on one side. Journal of Dynamics & Games, 2014, 1 (1) : 105-119. doi: 10.3934/jdg.2014.1.105

[8]

Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics & Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411

[9]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[10]

Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215

[11]

Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics & Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555

[12]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[13]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[14]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[15]

Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719

[16]

Konstantin Avrachenkov, Giovanni Neglia, Vikas Vikram Singh. Network formation games with teams. Journal of Dynamics & Games, 2016, 3 (4) : 303-318. doi: 10.3934/jdg.2016016

[17]

Hassan Najafi Alishah, Pedro Duarte. Hamiltonian evolutionary games. Journal of Dynamics & Games, 2015, 2 (1) : 33-49. doi: 10.3934/jdg.2015.2.33

[18]

Yonghui Zhou, Jian Yu, Long Wang. Topological essentiality in infinite games. Journal of Industrial & Management Optimization, 2012, 8 (1) : 179-187. doi: 10.3934/jimo.2012.8.179

[19]

Alan Beggs. Learning in monotone bayesian games. Journal of Dynamics & Games, 2015, 2 (2) : 117-140. doi: 10.3934/jdg.2015.2.117

[20]

Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375

 Impact Factor: 

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]