2014, 1(3): 537-553. doi: 10.3934/jdg.2014.1.537

Game dynamics and Nash equilibria

1. 

CEREMADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, F-75775 Paris, France

Received  November 2012 Revised  July 2013 Published  July 2014

There are games with a unique Nash equilibrium but such that, for almost all initial conditions, all strategies in the support of this equilibrium are eliminated by the replicator dynamics and the best-reply dynamics.
Citation: Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537
References:
[1]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation,, Games and Economic Behavior, 11 (1995), 279. doi: 10.1006/game.1995.1052.

[2]

I. Gilboa and A. Matsui, Social stability and equilibrium,, Econometrica, 59 (1991), 859. doi: 10.2307/2938230.

[3]

S. Hart, Adaptive heuristics,, Econometrica, 73 (2005), 1401. doi: 10.1111/j.1468-0262.2005.00625.x.

[4]

J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics,, Theoretical Economics, 6 (2011), 341. doi: 10.3982/TE771.

[5]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179.

[6]

J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics,, Mathematics of Operations Research, 34 (2009), 263. doi: 10.1287/moor.1080.0359.

[7]

M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games,, Mathematics of Operations Research, 6 (1981), 530. doi: 10.1287/moor.6.4.530.

[8]

A. Matsui, Best-response dynamics and socially stable strategies,, Journal of Economic Theory, 57 (1992), 343. doi: 10.1016/0022-0531(92)90040-O.

[9]

D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition,, SFB 504 Discussion Paper 97-12, (1997), 97.

[10]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).

[11]

P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145. doi: 10.1016/0025-5564(78)90077-9.

[12]

E. van Damme, Stability and Perfection of Nash Equilibria,, Second edition, (1991). doi: 10.1007/978-3-642-58242-4.

[13]

Y. Viossat, The replicator dynamics does not lead to correlated equilibria,, Games and Economic Behavior, 59 (2007), 397. doi: 10.1016/j.geb.2006.09.001.

[14]

Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria,, Mathematical Social Sciences, 56 (2008), 27. doi: 10.1016/j.mathsocsci.2007.12.001.

[15]

Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint,, , ().

[16]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).

[17]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), (1980), 471.

show all references

References:
[1]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons, and the replicator equation,, Games and Economic Behavior, 11 (1995), 279. doi: 10.1006/game.1995.1052.

[2]

I. Gilboa and A. Matsui, Social stability and equilibrium,, Econometrica, 59 (1991), 859. doi: 10.2307/2938230.

[3]

S. Hart, Adaptive heuristics,, Econometrica, 73 (2005), 1401. doi: 10.1111/j.1468-0262.2005.00625.x.

[4]

J. Hofbauer and W. H. Sandholm, Survival of dominated strategies under evolutionary dynamics,, Theoretical Economics, 6 (2011), 341. doi: 10.3982/TE771.

[5]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179.

[6]

J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics,, Mathematics of Operations Research, 34 (2009), 263. doi: 10.1287/moor.1080.0359.

[7]

M. J. M. Jansen, Regularity and stability of equilibrium points of bimatrix games,, Mathematics of Operations Research, 6 (1981), 530. doi: 10.1287/moor.6.4.530.

[8]

A. Matsui, Best-response dynamics and socially stable strategies,, Journal of Economic Theory, 57 (1992), 343. doi: 10.1016/0022-0531(92)90040-O.

[9]

D. Monderer and A. Sela, Fictitious-play and No-Cycling Condition,, SFB 504 Discussion Paper 97-12, (1997), 97.

[10]

W. H. Sandholm, Population Games and Evolutionary Dynamics,, MIT Press, (2010).

[11]

P. D. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics,, Mathematical Biosciences, 40 (1978), 145. doi: 10.1016/0025-5564(78)90077-9.

[12]

E. van Damme, Stability and Perfection of Nash Equilibria,, Second edition, (1991). doi: 10.1007/978-3-642-58242-4.

[13]

Y. Viossat, The replicator dynamics does not lead to correlated equilibria,, Games and Economic Behavior, 59 (2007), 397. doi: 10.1016/j.geb.2006.09.001.

[14]

Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibria,, Mathematical Social Sciences, 56 (2008), 27. doi: 10.1016/j.mathsocsci.2007.12.001.

[15]

Y. Viossat, Deterministic monotone dynamics and dominated strategies, preprint,, , ().

[16]

J. W. Weibull, Evolutionary Game Theory,, MIT Press, (1995).

[17]

E. C. Zeeman, Population dynamics from game theory,, in Global Theory of Dynamical Systems (eds. A. Nitecki and C. Robinson), (1980), 471.

[1]

Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics & Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003

[2]

Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic & Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109

[3]

Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics & Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017

[4]

Yuanshi Wang, Hong Wu, Shigui Ruan. Global dynamics and bifurcations in a four-dimensional replicator system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 259-271. doi: 10.3934/dcdsb.2013.18.259

[5]

Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215

[6]

Peter Bednarik, Josef Hofbauer. Discretized best-response dynamics for the Rock-Paper-Scissors game. Journal of Dynamics & Games, 2017, 4 (1) : 75-86. doi: 10.3934/jdg.2017005

[7]

MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777

[8]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[9]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[10]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[11]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[12]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics & Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

[13]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[14]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[15]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[16]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[17]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[18]

Brigitte Vallée. Euclidean dynamics. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 281-352. doi: 10.3934/dcds.2006.15.281

[19]

Yuri N. Fedorov, Dmitry V. Zenkov. Dynamics of the discrete Chaplygin sleigh. Conference Publications, 2005, 2005 (Special) : 258-267. doi: 10.3934/proc.2005.2005.258

[20]

Yi Ming Zou. Dynamics of boolean networks. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1629-1640. doi: 10.3934/dcdss.2011.4.1629

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]