2014, 1(3): 363-375. doi: 10.3934/jdg.2014.1.363

Pure and Random strategies in differential game with incomplete informations

1. 

CEREMADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75016 Paris, France

2. 

Laboratoire de Mathématiques de Bretagne Atlantique, CNRS-UMR 6205, Université de Brest, 6, avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3, France, France

Received  November 2012 Revised  May 2013 Published  July 2014

We investigate a two players zero sum differential game with incomplete information on the initial state: The first player has a private information on the initial state while the second player knows only a probability distribution on the initial state. This could be view as a generalization to differential games of the famous Aumann-Maschler framework for repeated games. In an article of the first author, the existence of the value in random strategies was obtained for a finite number of initial conditions (the probability distribution is a finite combination of Dirac measures). The main novelty of the present work consists in : first extending the result on the existence of a value in random strategies for infinite number of initial conditions and second - and mainly - proving the existence of a value in pure strategies when the initial probability distribution is regular enough (without atoms).
Citation: Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363
References:
[1]

L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical Aspects of Evolving Interfaces,, CIME Summer School in Madeira, (1812). doi: 10.1007/978-3-540-39189-0_1.

[2]

R. J. Aumann, Mixed and behavior strategies in infinite extensive games,, in Advances in Game Theory, (1964), 627.

[3]

R. J. Aumann and M. B. Maschler, Repeated Games with Incomplete Information,, MIT Press, (1995).

[4]

R. Buckdahn, P. Cardaliaguet and M. Quincampoix, Some recent aspects of differential game theory,, Dynamic Games Applications, 1 (2011), 74. doi: 10.1007/s13235-010-0005-0.

[5]

R. Buckdahn, J. Li and M. Quincampoix, Value function of differential games without isaacs conditions. An approach with non-anticipative mixed strategies,, Internat. J. of Game Theory, 42 (2013), 989. doi: 10.1007/s00182-012-0351-9.

[6]

P. Cardaliaguet, Differential games with asymmetric information,, SIAM J. Control Optim., 46 (2007), 816. doi: 10.1137/060654396.

[7]

P. Cardaliaguet and M. Quincampoix, Deterministic differential games under probability knowledge of initial condition,, Int. Game Theory Rev., 10 (2008), 1. doi: 10.1142/S021919890800173X.

[8]

P. Cardaliaguet and C. Rainer, Stochastic differential games with assymetric information,, Appl. Math. Optim., 59 (2009), 1. doi: 10.1007/s00245-008-9042-0.

[9]

P. Cardaliaguet and C. Rainer, Games with incomplete information in continuous time and for continuous types,, Dyn. Games Appl., 2 (2012), 206. doi: 10.1007/s13235-012-0043-x.

[10]

C. Dellacherie and P. A. Meyer, Probabilities and Potential,, North-Holland Mathematics Studies, (1978).

[11]

J. F. Mertens, S. Sorin and S. Zamir, Repeated Games,, CORE Discussion Papers 9420, (9420). doi: 10.1057/9780230226203.3424.

[12]

A. Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 1. doi: 10.1016/j.anihpb.2005.12.001.

[13]

D. Schmeidler, Equilibrium points of nonatomic games,, Journal of Statistical Physics, 7 (1973), 295. doi: 10.1007/BF01014905.

[14]

C. Villani, Topics in Optimal Transportation,, Graduate studies in Mathematics, (2003). doi: 10.1007/b12016.

show all references

References:
[1]

L. Ambrosio, Lecture Notes on Optimal Transport Problems, Mathematical Aspects of Evolving Interfaces,, CIME Summer School in Madeira, (1812). doi: 10.1007/978-3-540-39189-0_1.

[2]

R. J. Aumann, Mixed and behavior strategies in infinite extensive games,, in Advances in Game Theory, (1964), 627.

[3]

R. J. Aumann and M. B. Maschler, Repeated Games with Incomplete Information,, MIT Press, (1995).

[4]

R. Buckdahn, P. Cardaliaguet and M. Quincampoix, Some recent aspects of differential game theory,, Dynamic Games Applications, 1 (2011), 74. doi: 10.1007/s13235-010-0005-0.

[5]

R. Buckdahn, J. Li and M. Quincampoix, Value function of differential games without isaacs conditions. An approach with non-anticipative mixed strategies,, Internat. J. of Game Theory, 42 (2013), 989. doi: 10.1007/s00182-012-0351-9.

[6]

P. Cardaliaguet, Differential games with asymmetric information,, SIAM J. Control Optim., 46 (2007), 816. doi: 10.1137/060654396.

[7]

P. Cardaliaguet and M. Quincampoix, Deterministic differential games under probability knowledge of initial condition,, Int. Game Theory Rev., 10 (2008), 1. doi: 10.1142/S021919890800173X.

[8]

P. Cardaliaguet and C. Rainer, Stochastic differential games with assymetric information,, Appl. Math. Optim., 59 (2009), 1. doi: 10.1007/s00245-008-9042-0.

[9]

P. Cardaliaguet and C. Rainer, Games with incomplete information in continuous time and for continuous types,, Dyn. Games Appl., 2 (2012), 206. doi: 10.1007/s13235-012-0043-x.

[10]

C. Dellacherie and P. A. Meyer, Probabilities and Potential,, North-Holland Mathematics Studies, (1978).

[11]

J. F. Mertens, S. Sorin and S. Zamir, Repeated Games,, CORE Discussion Papers 9420, (9420). doi: 10.1057/9780230226203.3424.

[12]

A. Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation,, Ann. Inst. H. Poincaré Probab. Statist., 43 (2007), 1. doi: 10.1016/j.anihpb.2005.12.001.

[13]

D. Schmeidler, Equilibrium points of nonatomic games,, Journal of Statistical Physics, 7 (1973), 295. doi: 10.1007/BF01014905.

[14]

C. Villani, Topics in Optimal Transportation,, Graduate studies in Mathematics, (2003). doi: 10.1007/b12016.

[1]

Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics & Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002

[2]

Marianne Akian, Stéphane Gaubert, Antoine Hochart. Ergodicity conditions for zero-sum games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3901-3931. doi: 10.3934/dcds.2015.35.3901

[3]

Xiangxiang Huang, Xianping Guo, Jianping Peng. A probability criterion for zero-sum stochastic games. Journal of Dynamics & Games, 2017, 4 (4) : 369-383. doi: 10.3934/jdg.2017020

[4]

Libin Mou, Jiongmin Yong. Two-person zero-sum linear quadratic stochastic differential games by a Hilbert space method. Journal of Industrial & Management Optimization, 2006, 2 (1) : 95-117. doi: 10.3934/jimo.2006.2.95

[5]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics & Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

[6]

Sylvain Sorin, Guillaume Vigeral. Reversibility and oscillations in zero-sum discounted stochastic games. Journal of Dynamics & Games, 2015, 2 (1) : 103-115. doi: 10.3934/jdg.2015.2.103

[7]

Fernando Luque-Vásquez, J. Adolfo Minjárez-Sosa. Average optimal strategies for zero-sum Markov games with poorly known payoff function on one side. Journal of Dynamics & Games, 2014, 1 (1) : 105-119. doi: 10.3934/jdg.2014.1.105

[8]

Alexander J. Zaslavski. Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. Journal of Dynamics & Games, 2014, 1 (2) : 299-330. doi: 10.3934/jdg.2014.1.299

[9]

Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics & Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411

[10]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[11]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[12]

Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215

[13]

Beatris Adriana Escobedo-Trujillo, José Daniel López-Barrientos. Nonzero-sum stochastic differential games with additive structure and average payoffs. Journal of Dynamics & Games, 2014, 1 (4) : 555-578. doi: 10.3934/jdg.2014.1.555

[14]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[15]

Zhi-Wei Sun. Unification of zero-sum problems, subset sums and covers of Z. Electronic Research Announcements, 2003, 9: 51-60.

[16]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[17]

John A. Morgan. Interception in differential pursuit/evasion games. Journal of Dynamics & Games, 2016, 3 (4) : 335-354. doi: 10.3934/jdg.2016018

[18]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[19]

Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719

[20]

Ellina Grigorieva, Evgenii Khailov. Hierarchical differential games between manufacturer and retailer. Conference Publications, 2009, 2009 (Special) : 300-314. doi: 10.3934/proc.2009.2009.300

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

[Back to Top]