doi: 10.3934/jcd.2017004

Set-oriented numerical computation of rotation sets

1. 

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38,01187 Dresden, Germany

2. 

Leuphana Universität Lüneburg, Institute of Mathematics and its Didactics, Universitätsallee 1,21335 Lüneburg, Germany

3. 

Friedrich-Schiller-Universität Jena, Institute of Mathematics, Ernst-Abbe-Platz 2,07743 Jena, Germany

Received  September 2017 Published  November 2017

We establish a set-oriented algorithm for the numerical approximation of the rotation set of homeomorphisms of the two-torus homotopic to the identity. A theoretical background is given by the concept of $\varepsilon$-rotation sets. These are obtained by replacing orbits with $\varepsilon$-pseudo-orbits in the definition of the Misiurewicz-Ziemian rotation set and are shown to converge to the latter as $\varepsilon$ decreases to zero. Based on this result, we prove the convergence of the numerical approximations as precision and iteration time tend to infinity. Further, we provide analytic error estimates for the algorithm under an additional boundedness assumption, which is known to hold in many relevant cases and in particular for non-empty interior rotation sets.

Citation: Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, doi: 10.3934/jcd.2017004
References:
[1]

S. Addas-Zanata, Uniform bounds for diffeomorphisms of the torus and a conjecture of boyland, J. Lond. Math. Soc., 91 (2015), 537-553. doi: 10.1112/jlms/jdu081.

[2]

A. Avila, X. -C. Liu and D. Xu, On non-existence of point-wise rotation vectors for minimal toral diffeomorphisms, Preprint, 2016.

[3]

F. Béguin, S. Crovisier, F. Le Roux, Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: The {Denjoy-Rees} technique, Ann. Sci. Éc. Norm. Supér., 40 (2007), 251-308. doi: 10.1016/j.ansens.2007.01.001.

[4]

P. Boyland, A. de Carvalho, T. Hall, New rotation sets in a family of torus homeomorphisms, Invent. Math., 204 (2016), 895-937. doi: 10.1007/s00222-015-0628-2.

[5]

P. Davalos, On annular maps of the torus and sublinear diffusion, Inst. Math. Jussieu, (2016), 1-66. doi: 10.1017/S1474748016000268.

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO – set oriented numerical methods for dynamical systems, In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, (2001), 145–174,805–807.

[7]

J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc., 311 (1989), 107-115. doi: 10.1090/S0002-9947-1989-0958891-1.

[8]

J. Franks, M. Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc., 109 (1990), 243-249. doi: 10.1090/S0002-9939-1990-1021217-5.

[9]

P.-A. Guiheneuf, How roundoff errors help to compute the rotation set of torus homeomorphisms, Topology App., 193 (2015), 116-139. doi: 10.1016/j.topol.2015.06.010.

[10]

P.-A. Guihéneuf, A. Koropecki, Stability of the rotation set of area-preserving toral homeomorphisms, Nonlinearity, 30 (2017), 1089-1096. doi: 10.1088/1361-6544/aa59d9.

[11]

T. Jäger, Elliptic stars in a chaotic night, J. Lond. Math. Soc., 84 (2011), 595-611. doi: 10.1112/jlms/jdr023.

[12]

T. Jäger, A. Passeggi, On torus homeomorphisms semiconjugate to irrational circle rotations, Ergodic Theory Dynam. Systems, 35 (2015), 2114-2137. doi: 10.1017/etds.2014.23.

[13]

T. Jäger, F. Tal, Irrational rotation factors for conservative torus homeomorphisms, Ergodic Theory Dynam. Systems, 37 (2017), 1537-1546. doi: 10.1017/etds.2015.112.

[14]

D. B. Johnson, Finding all the elementary circuits of a directed graph, SIAM J. Comput., 4 (1975), 77-84. doi: 10.1137/0204007.

[15]

A. Kocsard, On the dynamics of minimal homeomorphisms of $\mathbb{T}^2$ which are not pseudo-rotations, Preprint, arXiv: 1611.03784,2016.

[16]

A. Koropecki, A. Passeggi and M. Sambarino, The Franks-Misiurewicz conjecture for extensions of irrational rotations, Preprint, arXiv: 1611.05498,2016.

[17]

A. Koropecki, F. Tal, Strictly toral dynamics, Invent. Math., 196 (2014), 339-381. doi: 10.1007/s00222-013-0470-3.

[18]

A. Koropecki, F. Tal, Bounded and unbounded behavior for area-preserving rational pseudo-rotations, Proc. Lond. Math. Soc., 109 (2014), 785-822. doi: 10.1112/plms/pdu023.

[19]

J. Kwapisz, Every convex polygon with rational vertices is a rotation set, Ergodic Theory Dynam. Systems, 12 (1992), 333-339. doi: 10.1017/S0143385700006787.

[20]

J. Kwapisz, A toral diffeomorphism with a nonpolygonal rotation set, Nonlinearity, 8 (1995), 461-476. doi: 10.1088/0951-7715/8/4/001.

[21]

P. Le Calvez and S. Addas-Zanata, Rational mode locking for homeomorphisms of the 2-torus, Preprint, arXiv: 1508.02597,2015.

[22]

P. Le Calvez and F. Tal, Forcing theory for transverse trajectories of surface homeomorphisms, Preprint, arXiv: 1503.09127,2015.

[23]

P. Leboeuf, J. Kurchan, M. Feingold, D.P. Arovas, Phase-space localization: topological aspects of quantum chaos, Phys. Rev. Lett., 65 (1990), 3076-3079. doi: 10.1103/PhysRevLett.65.3076.

[24]

J. Llibre, R. S. MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems, 11 (1991), 115-128. doi: 10.1017/S0143385700006040.

[25]

M. Misiurewicz, K. Ziemian, Rotation sets for maps of tori, J. Lond. Math. Soc., 40 (1989), 490-506. doi: 10.1112/jlms/s2-40.3.490.

[26]

A. Passeggi, Rational polygons as rotation sets of generic torus homeomorphisms of the two torus, J. Lond. Math. Soc., 89 (2014), 235-254. doi: 10.1112/jlms/jdt040.

[27]

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle, J. Math. Pure. Appl., Série IV, 1 (1885), 167-244.

show all references

References:
[1]

S. Addas-Zanata, Uniform bounds for diffeomorphisms of the torus and a conjecture of boyland, J. Lond. Math. Soc., 91 (2015), 537-553. doi: 10.1112/jlms/jdu081.

[2]

A. Avila, X. -C. Liu and D. Xu, On non-existence of point-wise rotation vectors for minimal toral diffeomorphisms, Preprint, 2016.

[3]

F. Béguin, S. Crovisier, F. Le Roux, Construction of curious minimal uniquely ergodic homeomorphisms on manifolds: The {Denjoy-Rees} technique, Ann. Sci. Éc. Norm. Supér., 40 (2007), 251-308. doi: 10.1016/j.ansens.2007.01.001.

[4]

P. Boyland, A. de Carvalho, T. Hall, New rotation sets in a family of torus homeomorphisms, Invent. Math., 204 (2016), 895-937. doi: 10.1007/s00222-015-0628-2.

[5]

P. Davalos, On annular maps of the torus and sublinear diffusion, Inst. Math. Jussieu, (2016), 1-66. doi: 10.1017/S1474748016000268.

[6]

M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO – set oriented numerical methods for dynamical systems, In Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, (2001), 145–174,805–807.

[7]

J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc., 311 (1989), 107-115. doi: 10.1090/S0002-9947-1989-0958891-1.

[8]

J. Franks, M. Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc., 109 (1990), 243-249. doi: 10.1090/S0002-9939-1990-1021217-5.

[9]

P.-A. Guiheneuf, How roundoff errors help to compute the rotation set of torus homeomorphisms, Topology App., 193 (2015), 116-139. doi: 10.1016/j.topol.2015.06.010.

[10]

P.-A. Guihéneuf, A. Koropecki, Stability of the rotation set of area-preserving toral homeomorphisms, Nonlinearity, 30 (2017), 1089-1096. doi: 10.1088/1361-6544/aa59d9.

[11]

T. Jäger, Elliptic stars in a chaotic night, J. Lond. Math. Soc., 84 (2011), 595-611. doi: 10.1112/jlms/jdr023.

[12]

T. Jäger, A. Passeggi, On torus homeomorphisms semiconjugate to irrational circle rotations, Ergodic Theory Dynam. Systems, 35 (2015), 2114-2137. doi: 10.1017/etds.2014.23.

[13]

T. Jäger, F. Tal, Irrational rotation factors for conservative torus homeomorphisms, Ergodic Theory Dynam. Systems, 37 (2017), 1537-1546. doi: 10.1017/etds.2015.112.

[14]

D. B. Johnson, Finding all the elementary circuits of a directed graph, SIAM J. Comput., 4 (1975), 77-84. doi: 10.1137/0204007.

[15]

A. Kocsard, On the dynamics of minimal homeomorphisms of $\mathbb{T}^2$ which are not pseudo-rotations, Preprint, arXiv: 1611.03784,2016.

[16]

A. Koropecki, A. Passeggi and M. Sambarino, The Franks-Misiurewicz conjecture for extensions of irrational rotations, Preprint, arXiv: 1611.05498,2016.

[17]

A. Koropecki, F. Tal, Strictly toral dynamics, Invent. Math., 196 (2014), 339-381. doi: 10.1007/s00222-013-0470-3.

[18]

A. Koropecki, F. Tal, Bounded and unbounded behavior for area-preserving rational pseudo-rotations, Proc. Lond. Math. Soc., 109 (2014), 785-822. doi: 10.1112/plms/pdu023.

[19]

J. Kwapisz, Every convex polygon with rational vertices is a rotation set, Ergodic Theory Dynam. Systems, 12 (1992), 333-339. doi: 10.1017/S0143385700006787.

[20]

J. Kwapisz, A toral diffeomorphism with a nonpolygonal rotation set, Nonlinearity, 8 (1995), 461-476. doi: 10.1088/0951-7715/8/4/001.

[21]

P. Le Calvez and S. Addas-Zanata, Rational mode locking for homeomorphisms of the 2-torus, Preprint, arXiv: 1508.02597,2015.

[22]

P. Le Calvez and F. Tal, Forcing theory for transverse trajectories of surface homeomorphisms, Preprint, arXiv: 1503.09127,2015.

[23]

P. Leboeuf, J. Kurchan, M. Feingold, D.P. Arovas, Phase-space localization: topological aspects of quantum chaos, Phys. Rev. Lett., 65 (1990), 3076-3079. doi: 10.1103/PhysRevLett.65.3076.

[24]

J. Llibre, R. S. MacKay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergodic Theory Dynam. Systems, 11 (1991), 115-128. doi: 10.1017/S0143385700006040.

[25]

M. Misiurewicz, K. Ziemian, Rotation sets for maps of tori, J. Lond. Math. Soc., 40 (1989), 490-506. doi: 10.1112/jlms/s2-40.3.490.

[26]

A. Passeggi, Rational polygons as rotation sets of generic torus homeomorphisms of the two torus, J. Lond. Math. Soc., 89 (2014), 235-254. doi: 10.1112/jlms/jdt040.

[27]

H. Poincaré, Mémoire sur les courbes définies par une équation différentielle, J. Math. Pure. Appl., Série IV, 1 (1885), 167-244.

Figure 4.1.  Approximation of $\varrho{F_{1,1}}$ by a direct approach, $80$ (left) and $2500$ (right) iterations, grid range $0.001$ each
Figure 4.2.  Box image of a box $B$ in the box covering $\mathcal{B}_k$, for one test point, exemplarily
Figure 5.1.  Approximations $Q^*_{k,n}$ for the rotation set of the map $F_{1,1}$ with $k=8$ and $n = 1,2,5,10,25,50,100,200$ (from top left to bottom right)
Figure 5.2.  Zoom on top left area of the approximations $Q_{8,100}^\ast$ (left) and $Q_{8,200}^\ast$ (right) for the rotation set of the map $F_{1,1}$. The shaded area is the $2\sqrt{2}/n$-neighbourhood of these sets, which is a superset of $\rho(F_{1,1})$ by Lemma 19
Figure 5.3.  Approximations $Q_{k,n}^*$ for the rotation sets of the maps $F_{^1{/_2},^1{/_2}}, F_{1,{^1{/_4}}}, F_{^{3 }{/_{5}},^{3 }{/_{5}}}$ and $F_{{^3{/_4}},1}$ (with $k=50, 16, 50,45$ and $n=130,140,100,80$ from top left to bottom right)
Figure 5.4.  Approximation $Q_{60,130}^\ast$ for the rotation set of the map $G$
Figure 5.5.  Approximations $Q_{k,n}^*$ for the rotation sets of the perturbed maps $\bar{F}_{^1{/_2},^1{/_2}}, \bar{G}, \bar{F}_{1,{^1{/_4}}}, \bar{F}_{^{3 }{/_{5}},^{3 }{/_{5}}}$, $\bar{F}_{{^3{/_4}},1}$ and $\bar{F}_{1,1}$ (from top left to bottom right) according to Table 1
Figure 5.6.  Approximations $Q^*_{k,n}$ of the rotation set of $F_{0.873,0.873}$ with $n=50$ and $k=15,16,20,25,30,40,50,80$ (from top left to bottom right)
Figure 5.7.  Approximations $Q^*_{k,n}$ of the rotation set of the map $F_{0.873,0.873}$ with $n=100$ and $k=15,20,40,50$ (from top left to bottom right)
Figure 5.8.  Approximations of the rotation sets of $F_{\alpha_i,\beta_i}$ taken from a series with parameters $\alpha_i=\beta_i=0.02\cdot i$ and an adapted choice for the iteration time and grid sizes $n(i)=k(i)=110-i$. Pictures are shown for $i=30,35,36,37$ (from left to right), indicating a mode-locking region from $i=30$ to $i=35$
Figure 9.  A closer look at the parameter region considered in Figure 5.8. Rotation sets were approximated for parameters $\alpha_j=\beta_j=0.7+0.01\cdot j$, with $j=0, \ldots , 7$ and $n=75$ and $k=90$ fixed. Note the difference between the third picture in the first line and the third in Figure 5.8, which both correspond to parameters $\alpha=\beta=0.72$ (but different precisions)
Table 1.  Parameter values for the approximations shown in Figure 5.5
$\bar{F}_{\frac{1}{2},\frac{1}{2}}$ $\bar{G}$ $\bar{F}_{1,\frac{1}{4}}$ $\bar{F}_{\frac{3}{5},\frac{3}{5}}$$\bar{F}_{\frac{3}{4},1}$$\bar{F}_{1,1}$
$k$$50$$60$$16$$50$$45$$8$
$n$$130$$130$$140$$100$$80$$100$
$r_1$$0.012$$0.008$$0.012$$0.01$$0.002$$0.022$
$r_2$$0.014$$0.001$$0.002$$0.011$$0.013$$0.015$
$\bar{F}_{\frac{1}{2},\frac{1}{2}}$ $\bar{G}$ $\bar{F}_{1,\frac{1}{4}}$ $\bar{F}_{\frac{3}{5},\frac{3}{5}}$$\bar{F}_{\frac{3}{4},1}$$\bar{F}_{1,1}$
$k$$50$$60$$16$$50$$45$$8$
$n$$130$$130$$140$$100$$80$$100$
$r_1$$0.012$$0.008$$0.012$$0.01$$0.002$$0.022$
$r_2$$0.014$$0.001$$0.002$$0.011$$0.013$$0.015$
[1]

Héctor E. Lomelí. Heteroclinic orbits and rotation sets for twist maps. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 343-354. doi: 10.3934/dcds.2006.14.343

[2]

Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i

[3]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[4]

Deissy M. S. Castelblanco. Restrictions on rotation sets for commuting torus homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5257-5266. doi: 10.3934/dcds.2016030

[5]

Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361

[6]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[7]

Arek Goetz. Dynamics of a piecewise rotation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 593-608. doi: 10.3934/dcds.1998.4.593

[8]

Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

[9]

David Cowan. A billiard model for a gas of particles with rotation. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 101-109. doi: 10.3934/dcds.2008.22.101

[10]

Mads Kyed. On a mapping property of the Oseen operator with rotation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1315-1322. doi: 10.3934/dcdss.2013.6.1315

[11]

Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631

[12]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[13]

Paolo Antonelli, Daniel Marahrens, Christof Sparber. On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 703-715. doi: 10.3934/dcds.2012.32.703

[14]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[15]

Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599

[16]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[17]

Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399

[18]

Bertold Bongardt. Geometric characterization of the workspace of non-orthogonal rotation axes. Journal of Geometric Mechanics, 2014, 6 (2) : 141-166. doi: 10.3934/jgm.2014.6.141

[19]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2/3) : 597-611. doi: 10.3934/dcds.2007.18.597

[20]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]