2015, 2(2): 247-265. doi: 10.3934/jcd.2015005

A kernel-based method for data-driven koopman spectral analysis

1. 

United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06118, United States

2. 

Dept. of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544

3. 

Department of Chemical and Biological Engineering & PACM, Princeton University, Princeton, NJ 08544, United States

Received  February 2015 Revised  February 2016 Published  May 2016

A data-driven, kernel-based method for approximating the leading Koopman eigenvalues, eigenfunctions, and modes in problems with high-dimensional state spaces is presented. This approach uses a set of scalar observables (functions that map a state to a scalar value) that are defined implicitly by the feature map associated with a user-defined kernel function. This circumvents the computational issues that arise due to the number of functions required to span a ``sufficiently rich'' subspace of all possible scalar observables in such applications. We illustrate this method on two examples: the first is the FitzHugh-Nagumo PDE, a prototypical one-dimensional reaction-diffusion system, and the second is a set of vorticity data computed from experimentally obtained velocity data from flow past a cylinder at Reynolds number 413. In both examples, we use the output of Dynamic Mode Decomposition, which has a similar computational cost, as the benchmark for our approach.
Citation: Matthew O. Williams, Clarence W. Rowley, Ioannis G. Kevrekidis. A kernel-based method for data-driven koopman spectral analysis. Journal of Computational Dynamics, 2015, 2 (2) : 247-265. doi: 10.3934/jcd.2015005
References:
[1]

S. Bagheri, Koopman-mode decomposition of the cylinder wake,, Journal of Fluid Mechanics, 726 (2013), 596. doi: 10.1017/jfm.2013.249.

[2]

S. Bagheri, Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum,, Physics of Fluids, 26 (2014). doi: 10.1063/1.4895898.

[3]

G. Baudat and F. Anouar, Kernel-based methods and function approximation,, In Proceedings of the International Joint Conference on Neural Networks, 2 (2001), 1244. doi: 10.1109/IJCNN.2001.939539.

[4]

C. M. Bishop et al, Pattern Recognition and Machine Learning,, Springer, (2006). doi: 10.1007/978-0-387-45528-0.

[5]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Courier Dover Publications, (2001).

[6]

M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012). doi: 10.1063/1.4772195.

[7]

C. J. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121.

[8]

A. Chatterjee, An introduction to the proper orthogonal decomposition,, Current Science, 78 (2000), 808.

[9]

K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses,, Journal of Nonlinear Science, 22 (2012), 887. doi: 10.1007/s00332-012-9130-9.

[10]

R. R. Coifman and S. Lafon, Diffusion maps,, Applied and Computational Harmonic Analysis, 21 (2006), 5. doi: 10.1016/j.acha.2006.04.006.

[11]

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods,, Cambridge University Press, (2000). doi: 10.1017/CBO9780511801389.

[12]

C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations,, SIAM Journal on Applied Mathematics, 65 (2005), 1153. doi: 10.1137/S003613990343687X.

[13]

P. Gaspard and S. Tasaki, Liouvillian dynamics of the {Hopf} bifurcation,, Physical Review E, 64 (2001). doi: 10.1103/PhysRevE.64.056232.

[14]

M. S. Hemati, M. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets,, Physics of Fluids, 26 (2014). doi: 10.1063/1.4901016.

[15]

P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (2012). doi: 10.1017/CBO9780511919701.

[16]

M. R. Jovanović, P. J. Schmid and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,, Physics of Fluids, 26 (2014).

[17]

J.-N. Juang, Applied System Identification,, Prentice Hall, (1994).

[18]

B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra,, Proceedings of the National Academy of Sciences of the United States of America, 18 (1932), 255. doi: 10.1073/pnas.18.3.255.

[19]

B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,, Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315. doi: 10.1073/pnas.17.5.315.

[20]

J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction,, Springer, (2007). doi: 10.1007/978-0-387-39351-3.

[21]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6., SIAM, (1998). doi: 10.1137/1.9780898719628.

[22]

A. Mauroy and I. Mezic, A spectral operator-theoretic framework for global stability,, In 52nd IEEE Conference on Decision and Control, (2013), 5234. doi: 10.1109/CDC.2013.6760712.

[23]

I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions,, Nonlinear Dynamics, 41 (2005), 309. doi: 10.1007/s11071-005-2824-x.

[24]

I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator,, Annual Review of Fluid Mechanics, 45 (2013), 357. doi: 10.1146/annurev-fluid-011212-140652.

[25]

C. E. Rasmussen, Gaussian Processes for Machine Learning,, MIT Press, (2006).

[26]

C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows,, Journal of Fluid Mechanics, 641 (2009), 115. doi: 10.1017/S0022112009992059.

[27]

P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,, Journal of Fluid Mechanics, 656 (2010), 5. doi: 10.1017/S0022112010001217.

[28]

P. J. Schmid, D. Violato and F. Scarano, Decomposition of time-resolved tomographic PIV,, Experiments in Fluids, 52 (2012), 1567. doi: 10.1007/s00348-012-1266-8.

[29]

P. J. Schmid, L. Li, M. P. Juniper and O. Pust, Applications of the dynamic mode decomposition,, Theoretical and Computational Fluid Dynamics, 25 (2011), 249. doi: 10.1007/s00162-010-0203-9.

[30]

B. Scholkopf, The kernel trick for distances,, Advances in Neural Information Processing Systems, (2001), 301.

[31]

L. Sirovich, Turbulence and the dynamics of coherent structures. part I: Coherent structures,, Quarterly of applied mathematics, 45 (1987), 561.

[32]

G. Tissot, L. Cordier, N. Benard and B. R. Noack, Model reduction using dynamic mode decomposition,, Comptes Rendus Mćcanique, 342 (2014), 410. doi: 10.1016/j.crme.2013.12.011.

[33]

J. H. Tu, C. W. Rowley, J. N. Kutz and J. K. Shang, Toward compressed DMD: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data,, Experiments in Fluids, 55 (2014), 1.

[34]

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications,, Journal of Computational Dynamics, 1 (2014), 391. doi: 10.3934/jcd.2014.1.391.

[35]

M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,, Journal of Nonlinear Science, 25 (2015), 1307. doi: 10.1007/s00332-015-9258-5.

[36]

A. Wynn, D. S. Pearson, B. Ganapathisubramani and P. J. Goulart, Optimal mode decomposition for unsteady flows,, Journal of Fluid Mechanics, 733 (2013), 473. doi: 10.1017/jfm.2013.426.

show all references

References:
[1]

S. Bagheri, Koopman-mode decomposition of the cylinder wake,, Journal of Fluid Mechanics, 726 (2013), 596. doi: 10.1017/jfm.2013.249.

[2]

S. Bagheri, Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum,, Physics of Fluids, 26 (2014). doi: 10.1063/1.4895898.

[3]

G. Baudat and F. Anouar, Kernel-based methods and function approximation,, In Proceedings of the International Joint Conference on Neural Networks, 2 (2001), 1244. doi: 10.1109/IJCNN.2001.939539.

[4]

C. M. Bishop et al, Pattern Recognition and Machine Learning,, Springer, (2006). doi: 10.1007/978-0-387-45528-0.

[5]

J. P. Boyd, Chebyshev and Fourier Spectral Methods,, Courier Dover Publications, (2001).

[6]

M. Budišić, R. Mohr and I. Mezić, Applied Koopmanism,, Chaos: An Interdisciplinary Journal of Nonlinear Science, 22 (2012). doi: 10.1063/1.4772195.

[7]

C. J. Burges, A tutorial on support vector machines for pattern recognition,, Data Mining and Knowledge Discovery, 2 (1998), 121.

[8]

A. Chatterjee, An introduction to the proper orthogonal decomposition,, Current Science, 78 (2000), 808.

[9]

K. K. Chen, J. H. Tu and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses,, Journal of Nonlinear Science, 22 (2012), 887. doi: 10.1007/s00332-012-9130-9.

[10]

R. R. Coifman and S. Lafon, Diffusion maps,, Applied and Computational Harmonic Analysis, 21 (2006), 5. doi: 10.1016/j.acha.2006.04.006.

[11]

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods,, Cambridge University Press, (2000). doi: 10.1017/CBO9780511801389.

[12]

C. E. Elmer and E. S. Van Vleck, Spatially discrete FitzHugh-Nagumo equations,, SIAM Journal on Applied Mathematics, 65 (2005), 1153. doi: 10.1137/S003613990343687X.

[13]

P. Gaspard and S. Tasaki, Liouvillian dynamics of the {Hopf} bifurcation,, Physical Review E, 64 (2001). doi: 10.1103/PhysRevE.64.056232.

[14]

M. S. Hemati, M. O. Williams and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets,, Physics of Fluids, 26 (2014). doi: 10.1063/1.4901016.

[15]

P. Holmes, J. L. Lumley, G. Berkooz and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry,, Cambridge University Press, (2012). doi: 10.1017/CBO9780511919701.

[16]

M. R. Jovanović, P. J. Schmid and J. W. Nichols, Sparsity-promoting dynamic mode decomposition,, Physics of Fluids, 26 (2014).

[17]

J.-N. Juang, Applied System Identification,, Prentice Hall, (1994).

[18]

B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra,, Proceedings of the National Academy of Sciences of the United States of America, 18 (1932), 255. doi: 10.1073/pnas.18.3.255.

[19]

B. O. Koopman, Hamiltonian systems and transformation in Hilbert space,, Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315. doi: 10.1073/pnas.17.5.315.

[20]

J. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction,, Springer, (2007). doi: 10.1007/978-0-387-39351-3.

[21]

R. B. Lehoucq, D. C. Sorensen and C. Yang, ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6., SIAM, (1998). doi: 10.1137/1.9780898719628.

[22]

A. Mauroy and I. Mezic, A spectral operator-theoretic framework for global stability,, In 52nd IEEE Conference on Decision and Control, (2013), 5234. doi: 10.1109/CDC.2013.6760712.

[23]

I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions,, Nonlinear Dynamics, 41 (2005), 309. doi: 10.1007/s11071-005-2824-x.

[24]

I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator,, Annual Review of Fluid Mechanics, 45 (2013), 357. doi: 10.1146/annurev-fluid-011212-140652.

[25]

C. E. Rasmussen, Gaussian Processes for Machine Learning,, MIT Press, (2006).

[26]

C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter and D. S. Henningson, Spectral analysis of nonlinear flows,, Journal of Fluid Mechanics, 641 (2009), 115. doi: 10.1017/S0022112009992059.

[27]

P. J. Schmid, Dynamic mode decomposition of numerical and experimental data,, Journal of Fluid Mechanics, 656 (2010), 5. doi: 10.1017/S0022112010001217.

[28]

P. J. Schmid, D. Violato and F. Scarano, Decomposition of time-resolved tomographic PIV,, Experiments in Fluids, 52 (2012), 1567. doi: 10.1007/s00348-012-1266-8.

[29]

P. J. Schmid, L. Li, M. P. Juniper and O. Pust, Applications of the dynamic mode decomposition,, Theoretical and Computational Fluid Dynamics, 25 (2011), 249. doi: 10.1007/s00162-010-0203-9.

[30]

B. Scholkopf, The kernel trick for distances,, Advances in Neural Information Processing Systems, (2001), 301.

[31]

L. Sirovich, Turbulence and the dynamics of coherent structures. part I: Coherent structures,, Quarterly of applied mathematics, 45 (1987), 561.

[32]

G. Tissot, L. Cordier, N. Benard and B. R. Noack, Model reduction using dynamic mode decomposition,, Comptes Rendus Mćcanique, 342 (2014), 410. doi: 10.1016/j.crme.2013.12.011.

[33]

J. H. Tu, C. W. Rowley, J. N. Kutz and J. K. Shang, Toward compressed DMD: Spectral analysis of fluid flows using sub-Nyquist-rate PIV data,, Experiments in Fluids, 55 (2014), 1.

[34]

J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton and J. N. Kutz, On dynamic mode decomposition: Theory and applications,, Journal of Computational Dynamics, 1 (2014), 391. doi: 10.3934/jcd.2014.1.391.

[35]

M. O. Williams, I. G. Kevrekidis and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition,, Journal of Nonlinear Science, 25 (2015), 1307. doi: 10.1007/s00332-015-9258-5.

[36]

A. Wynn, D. S. Pearson, B. Ganapathisubramani and P. J. Goulart, Optimal mode decomposition for unsteady flows,, Journal of Fluid Mechanics, 733 (2013), 473. doi: 10.1017/jfm.2013.426.

[1]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[2]

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391

[3]

Jiang Xie, Junfu Xu, Celine Nie, Qing Nie. Machine learning of swimming data via wisdom of crowd and regression analysis. Mathematical Biosciences & Engineering, 2017, 14 (2) : 511-527. doi: 10.3934/mbe.2017031

[4]

Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007

[5]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[6]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[7]

Rakesh Pilkar, Erik M. Bollt, Charles Robinson. Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1085-1097. doi: 10.3934/mbe.2011.8.1085

[8]

Ahmad Deeb, A. Hamdouni, Dina Razafindralandy. Comparison between Borel-Padé summation and factorial series, as time integration methods. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 393-408. doi: 10.3934/dcdss.2016003

[9]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[10]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

[11]

Annalisa Pascarella, Alberto Sorrentino, Cristina Campi, Michele Piana. Particle filtering, beamforming and multiple signal classification for the analysis of magnetoencephalography time series: a comparison of algorithms. Inverse Problems & Imaging, 2010, 4 (1) : 169-190. doi: 10.3934/ipi.2010.4.169

[12]

Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101

[13]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces . Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[14]

Mingbao Cheng, Shuxian Xiao, Guosheng Liu. Single-machine rescheduling problems with learning effect under disruptions. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-14. doi: 10.3934/jimo.2017085

[15]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[16]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[17]

Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720

[18]

Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2/3 ) : 171-183. doi: 10.3934/bdia.2016003

[19]

Bouvrie Jake, Boumediene Hamzi. Kernel methods for the approximation of some key quantities of nonlinear systems. Journal of Computational Dynamics, 2017, 4 (1) : 1-19. doi: 10.3934/jcd.2017001

[20]

Cai-Tong Yue, Jing Liang, Bo-Fei Lang, Bo-Yang Qu. Two-hidden-layer extreme learning machine based wrist vein recognition system. Big Data & Information Analytics, 2017, 2 (1) : 59-68. doi: 10.3934/bdia.2017008

 Impact Factor: 

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

[Back to Top]