2015, 2(1): 95-142. doi: 10.3934/jcd.2015.2.95

Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof

1. 

Institute of Computer Science, Jagiellonian University, Lojasiewicza 6, 30-348 Kraków, Poland

Received  May 2012 Revised  January 2015 Published  August 2015

We apply the method of self-consistent bounds to prove the existence of multiple steady state bifurcations for Kuramoto-Sivashinski PDE on the line with odd and periodic boundary conditions.
Citation: Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95
References:
[1]

G. Arioli and H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation,, Arch. Rational Mech. An., 197 (2010), 1033. doi: 10.1007/s00205-010-0309-7.

[2]

, CAPD - Computer assisted proofs in dynamics, a package for rigorous numerics,, Available from: , ().

[3]

L. Cesari, Functional analysis and Galerkin's method,, Mich. Math. Jour., 11 (1964), 385. doi: 10.1307/mmj/1028999194.

[4]

S.-N. Chow and J. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).

[5]

F. Christiansen, P. Cvitanovic and V. Putkaradze, Spatiotemporal chaos in terms of unstable recurrent patterns,, Nonlinearity, 10 (1997), 55. doi: 10.1088/0951-7715/10/1/004.

[6]

P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, Analyticity for the Kuramoto-Sivashinsky equation,, Physica D, 67 (1993), 321. doi: 10.1016/0167-2789(93)90168-Z.

[7]

E. J. Doedel, AUTO: a program for the bifurcation analysis of autonomous system,, Congr. Numer., 30 (1981), 265.

[8]

E. J. Doedel and R. C. Paffenroth, The AUTO2000: command line user interface,, in Proceedings of the 9-th Python Conference, (2001), 233.

[9]

C. Foias, B. Nicolaenko, G. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension,, J. Math. Pures Appl., 67 (1988), 197.

[10]

J. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky equation; A bridge between PDEs and dynamical systems,, Physica D, 18 (1986), 113. doi: 10.1016/0167-2789(86)90166-1.

[11]

J. S. Il'yashenko, Global Analysis of the Phase Portrait for the Kuramoto-Sivashinsky equation,, J. Dyn. Diff. Eq., 4 (1992), 585. doi: 10.1007/BF01048261.

[12]

M. Jolly, I. Kevrekidis and E. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Physica D, 44 (1990), 38. doi: 10.1016/0167-2789(90)90046-R.

[13]

M. Jolly, R. Rosa and R. Temam, Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky Equation,, Adv. Differential Equations, 5 (2000), 31.

[14]

M. Jolly, R. Rosa and R. Temam, Acurate computations on inertial manifolds,, SIAM J. Sci. Compt., 22 (2000), 2216. doi: 10.1137/S1064827599351738.

[15]

I. Kevrekidis, B. Nicolaenko and C. Scovel, Back in saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation,, SIAM J. Appl. Math., 50 (1990), 760. doi: 10.1137/0150045.

[16]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theor. Phys., 55 (1976), 356. doi: 10.1143/PTP.55.356.

[17]

S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square,, Revista Matematica Complutense, 21 (2008), 351. doi: 10.5209/rev_REMA.2008.v21.n2.16380.

[18]

R. E. Moore, Interval Analysis,, Prentice Hall, (1966).

[19]

A. Neumeier, Interval Methods for Systems of Equations,, Cambrigde University Press, (1990).

[20]

A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics,, Texts in Applied Mathematics, (2000).

[21]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamical instability in laminar flames - 1. Derivation of basic equations,, Acta Astron, 4 (1977), 1177. doi: 10.1016/0094-5765(77)90096-0.

[22]

C. Scovel, I. Kevrekidis and B. Nicolaenko, Scaling laws and the prediction of bifurcations in systems modeling pattern formation,, Physics Letters A, 130 (1988), 73. doi: 10.1016/0375-9601(88)90242-3.

[23]

P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation,, Foundations of Computational Mathematics, 1 (2001), 255. doi: 10.1007/s002080010010.

[24]

P. Zgliczyński, Trapping regions and an ODE-type proof of existence and uniqueness for Navier-Stokes equations with periodic boundary conditions on the plane,, Univ. Iag. Acta Math., 41 (2003), 89.

[25]

P. Zgliczyński, On smooth dependence on initial conditions for dissipative PDEs, an ODE-type approach,, J. Diff. Eq., 195 (2003), 271. doi: 10.1016/j.jde.2003.07.009.

[26]

P. Zgliczyński, Attracting fixed points for the Kuramoto-Sivashinsky equation - a computer assisted proof,, SIAM Journal on Applied Dynamical Systems, 1 (2002), 215. doi: 10.1137/S111111110240176X.

[27]

, the file containing numerical data from the bifurcation proofs,, Available from: , ().

show all references

References:
[1]

G. Arioli and H. Koch, Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation,, Arch. Rational Mech. An., 197 (2010), 1033. doi: 10.1007/s00205-010-0309-7.

[2]

, CAPD - Computer assisted proofs in dynamics, a package for rigorous numerics,, Available from: , ().

[3]

L. Cesari, Functional analysis and Galerkin's method,, Mich. Math. Jour., 11 (1964), 385. doi: 10.1307/mmj/1028999194.

[4]

S.-N. Chow and J. Hale, Methods of Bifurcation Theory,, Springer-Verlag, (1982).

[5]

F. Christiansen, P. Cvitanovic and V. Putkaradze, Spatiotemporal chaos in terms of unstable recurrent patterns,, Nonlinearity, 10 (1997), 55. doi: 10.1088/0951-7715/10/1/004.

[6]

P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, Analyticity for the Kuramoto-Sivashinsky equation,, Physica D, 67 (1993), 321. doi: 10.1016/0167-2789(93)90168-Z.

[7]

E. J. Doedel, AUTO: a program for the bifurcation analysis of autonomous system,, Congr. Numer., 30 (1981), 265.

[8]

E. J. Doedel and R. C. Paffenroth, The AUTO2000: command line user interface,, in Proceedings of the 9-th Python Conference, (2001), 233.

[9]

C. Foias, B. Nicolaenko, G. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension,, J. Math. Pures Appl., 67 (1988), 197.

[10]

J. Hyman and B. Nicolaenko, The Kuramoto-Sivashinsky equation; A bridge between PDEs and dynamical systems,, Physica D, 18 (1986), 113. doi: 10.1016/0167-2789(86)90166-1.

[11]

J. S. Il'yashenko, Global Analysis of the Phase Portrait for the Kuramoto-Sivashinsky equation,, J. Dyn. Diff. Eq., 4 (1992), 585. doi: 10.1007/BF01048261.

[12]

M. Jolly, I. Kevrekidis and E. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations,, Physica D, 44 (1990), 38. doi: 10.1016/0167-2789(90)90046-R.

[13]

M. Jolly, R. Rosa and R. Temam, Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky Equation,, Adv. Differential Equations, 5 (2000), 31.

[14]

M. Jolly, R. Rosa and R. Temam, Acurate computations on inertial manifolds,, SIAM J. Sci. Compt., 22 (2000), 2216. doi: 10.1137/S1064827599351738.

[15]

I. Kevrekidis, B. Nicolaenko and C. Scovel, Back in saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation,, SIAM J. Appl. Math., 50 (1990), 760. doi: 10.1137/0150045.

[16]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theor. Phys., 55 (1976), 356. doi: 10.1143/PTP.55.356.

[17]

S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square,, Revista Matematica Complutense, 21 (2008), 351. doi: 10.5209/rev_REMA.2008.v21.n2.16380.

[18]

R. E. Moore, Interval Analysis,, Prentice Hall, (1966).

[19]

A. Neumeier, Interval Methods for Systems of Equations,, Cambrigde University Press, (1990).

[20]

A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics,, Texts in Applied Mathematics, (2000).

[21]

G. I. Sivashinsky, Nonlinear analysis of hydrodynamical instability in laminar flames - 1. Derivation of basic equations,, Acta Astron, 4 (1977), 1177. doi: 10.1016/0094-5765(77)90096-0.

[22]

C. Scovel, I. Kevrekidis and B. Nicolaenko, Scaling laws and the prediction of bifurcations in systems modeling pattern formation,, Physics Letters A, 130 (1988), 73. doi: 10.1016/0375-9601(88)90242-3.

[23]

P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation,, Foundations of Computational Mathematics, 1 (2001), 255. doi: 10.1007/s002080010010.

[24]

P. Zgliczyński, Trapping regions and an ODE-type proof of existence and uniqueness for Navier-Stokes equations with periodic boundary conditions on the plane,, Univ. Iag. Acta Math., 41 (2003), 89.

[25]

P. Zgliczyński, On smooth dependence on initial conditions for dissipative PDEs, an ODE-type approach,, J. Diff. Eq., 195 (2003), 271. doi: 10.1016/j.jde.2003.07.009.

[26]

P. Zgliczyński, Attracting fixed points for the Kuramoto-Sivashinsky equation - a computer assisted proof,, SIAM Journal on Applied Dynamical Systems, 1 (2002), 215. doi: 10.1137/S111111110240176X.

[27]

, the file containing numerical data from the bifurcation proofs,, Available from: , ().

[1]

Maxime Breden, Laurent Desvillettes, Jean-Philippe Lessard. Rigorous numerics for nonlinear operators with tridiagonal dominant linear part. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4765-4789. doi: 10.3934/dcds.2015.35.4765

[2]

Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781

[3]

Luiz Henrique de Figueiredo, Diego Nehab, Jorge Stolfi, João Batista S. de Oliveira. Rigorous bounds for polynomial Julia sets. Journal of Computational Dynamics, 2016, 3 (2) : 113-137. doi: 10.3934/jcd.2016006

[4]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[5]

Timothy J. Healey. A rigorous derivation of hemitropy in nonlinearly elastic rods. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 265-282. doi: 10.3934/dcdsb.2011.16.265

[6]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[7]

V. Afraimovich, J.-R. Chazottes, A. Cordonet. Synchronization in directionally coupled systems: Some rigorous results. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 421-442. doi: 10.3934/dcdsb.2001.1.421

[8]

Anna Belova. Rigorous enclosures of rotation numbers by interval methods. Journal of Computational Dynamics, 2016, 3 (1) : 81-91. doi: 10.3934/jcd.2016004

[9]

Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003

[10]

Enrico Valdinoci. Contemporary PDEs between theory and applications. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : i-i. doi: 10.3934/dcds.2015.35.12i

[11]

Gary Froyland, Oliver Junge, Kathrin Padberg-Gehle. Preface: Special issue on the occasion of the 4th International Workshop on Set-Oriented Numerics (SON 13, Dresden, 2013). Journal of Computational Dynamics, 2015, 2 (1) : i-ii. doi: 10.3934/jcd.2015.2.1i

[12]

Hassan Najafi Alishah, Pedro Duarte, Telmo Peixe. Conservative and dissipative polymatrix replicators. Journal of Dynamics & Games, 2015, 2 (2) : 157-185. doi: 10.3934/jdg.2015.2.157

[13]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems & Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[14]

Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048

[15]

Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335

[16]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[17]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[18]

Giuseppe Da Prato, Arnaud Debussche. Asymptotic behavior of stochastic PDEs with random coefficients. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1553-1570. doi: 10.3934/dcds.2010.27.1553

[19]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

[20]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

 Impact Factor: 

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]