• Previous Article
    Optimal control of multiscale systems using reduced-order models
  • JCD Home
  • This Issue
  • Next Article
    Optimizing the stable behavior of parameter-dependent dynamical systems --- maximal domains of attraction, minimal absorption times
2014, 1(2): 307-338. doi: 10.3934/jcd.2014.1.307

Lattice structures for attractors I

1. 

Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton

2. 

Rutgers University, 110 Frelinghusen Road, Piscataway, NJ 08854

3. 

VU University, De Boelelaan 1081a, 1081 HV, Amsterdam, Netherlands

Received  July 2013 Revised  December 2013 Published  December 2014

We describe the basic lattice structures of attractors and repellers in dynamical systems. The structure of distributive lattices allows for an algebraic treatment of gradient-like dynamics in general dynamical systems, both invertible and noninvertible. We separate those properties which rely solely on algebraic structures from those that require some topological arguments, in order to lay a foundation for the development of algorithms to manipulate these structures computationally.
Citation: William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307
References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics,, American Mathematical Society, (1993).

[2]

Z. Arai, W. D. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 757. doi: 10.1137/080734935.

[3]

K. A. Baker and A. W. Hales, Distributive projective lattices,, Canad. J. Math., 22 (1970), 472. doi: 10.4153/CJM-1970-054-0.

[4]

H. Ban and W. D. Kalies, A computational approach to Conley's decomposition theorem,, J. Comp. Nonlinear Dynamics, 1 (2006), 312. doi: 10.1115/1.2338651.

[5]

J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics,, CHAOS, 22 (2012). doi: 10.1063/1.4767672.

[6]

C. Conley, Isolated Invariant Sets and the Morse Index, vol. 38 of CBMS Regional Conference Series in Mathematics,, American Mathematical Society, (1978).

[7]

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd edition,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511809088.

[8]

R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions,, Trans. Amer. Math. Soc., 298 (1986), 193. doi: 10.1090/S0002-9947-1986-0857439-7.

[9]

R. D. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces,, J. Differential Equations, 71 (1988), 270. doi: 10.1016/0022-0396(88)90028-9.

[10]

R. Freese and J. B. Nation, Projective lattices,, Pacific J. Math., 75 (1978), 93. doi: 10.2140/pjm.1978.75.93.

[11]

G. Grätzer, Lattice Theory: Foundation,, Birkhäuser/Springer Basel AG, (2011). doi: 10.1007/978-3-0348-0018-1.

[12]

W. Kalies, K. Mischaikow and R. C. Vandervorst, An algorithmic approach to chain recurrence,, Found. Comput. Math., 5 (2005), 409. doi: 10.1007/s10208-004-0163-9.

[13]

W. Kalies, K. Mischaikow and R. C. Vandervorst, Lattice structures for attractors II,, Submitted for publication, ().

[14]

E. Liz and P. Pilarczyk, Global dynamics in a stage-structured discrete-time population model with harvesting,, J. Theoret. Biol., 297 (2012), 148. doi: 10.1016/j.jtbi.2011.12.012.

[15]

F. Miraglia, An Introduction to Partially Ordered Structures and Sheaves, vol. 1 of Contemporary Logic Series,, Polimetrica Scientific Publisher, (2006).

[16]

J. W. Robbin and D. A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor,, Ergodic Theory Dynam. Systems, 12 (1992), 153. doi: 10.1017/S0143385700006647.

[17]

C. Robinson, Dynamical Systems, 2nd edition,, Studies in Advanced Mathematics, (1999).

[18]

S. Roman, Lattices and Ordered Sets,, Springer, (2008).

[19]

S. Vickers, Topology via Logic, vol. 5 of Cambridge Tracts in Theoretical Computer Science,, Cambridge University Press, (1989).

show all references

References:
[1]

E. Akin, The General Topology of Dynamical Systems, vol. 1 of Graduate Studies in Mathematics,, American Mathematical Society, (1993).

[2]

Z. Arai, W. D. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 757. doi: 10.1137/080734935.

[3]

K. A. Baker and A. W. Hales, Distributive projective lattices,, Canad. J. Math., 22 (1970), 472. doi: 10.4153/CJM-1970-054-0.

[4]

H. Ban and W. D. Kalies, A computational approach to Conley's decomposition theorem,, J. Comp. Nonlinear Dynamics, 1 (2006), 312. doi: 10.1115/1.2338651.

[5]

J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics,, CHAOS, 22 (2012). doi: 10.1063/1.4767672.

[6]

C. Conley, Isolated Invariant Sets and the Morse Index, vol. 38 of CBMS Regional Conference Series in Mathematics,, American Mathematical Society, (1978).

[7]

B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd edition,, Cambridge University Press, (2002). doi: 10.1017/CBO9780511809088.

[8]

R. Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions,, Trans. Amer. Math. Soc., 298 (1986), 193. doi: 10.1090/S0002-9947-1986-0857439-7.

[9]

R. D. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces,, J. Differential Equations, 71 (1988), 270. doi: 10.1016/0022-0396(88)90028-9.

[10]

R. Freese and J. B. Nation, Projective lattices,, Pacific J. Math., 75 (1978), 93. doi: 10.2140/pjm.1978.75.93.

[11]

G. Grätzer, Lattice Theory: Foundation,, Birkhäuser/Springer Basel AG, (2011). doi: 10.1007/978-3-0348-0018-1.

[12]

W. Kalies, K. Mischaikow and R. C. Vandervorst, An algorithmic approach to chain recurrence,, Found. Comput. Math., 5 (2005), 409. doi: 10.1007/s10208-004-0163-9.

[13]

W. Kalies, K. Mischaikow and R. C. Vandervorst, Lattice structures for attractors II,, Submitted for publication, ().

[14]

E. Liz and P. Pilarczyk, Global dynamics in a stage-structured discrete-time population model with harvesting,, J. Theoret. Biol., 297 (2012), 148. doi: 10.1016/j.jtbi.2011.12.012.

[15]

F. Miraglia, An Introduction to Partially Ordered Structures and Sheaves, vol. 1 of Contemporary Logic Series,, Polimetrica Scientific Publisher, (2006).

[16]

J. W. Robbin and D. A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor,, Ergodic Theory Dynam. Systems, 12 (1992), 153. doi: 10.1017/S0143385700006647.

[17]

C. Robinson, Dynamical Systems, 2nd edition,, Studies in Advanced Mathematics, (1999).

[18]

S. Roman, Lattices and Ordered Sets,, Springer, (2008).

[19]

S. Vickers, Topology via Logic, vol. 5 of Cambridge Tracts in Theoretical Computer Science,, Cambridge University Press, (1989).

[1]

Xueting Tian. Topological Pressure for the Completely Irregular Set of Birkhoff Averages. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2745-2763. doi: 10.3934/dcds.2017118

[2]

Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055

[3]

Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011

[4]

John Hubbard, Yulij Ilyashenko. A proof of Kolmogorov's theorem. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 367-385. doi: 10.3934/dcds.2004.10.367

[5]

Kai Liu, Zhi Li. Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3551-3573. doi: 10.3934/dcdsb.2016110

[6]

David M. McClendon. An Ambrose-Kakutani representation theorem for countable-to-1 semiflows. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 251-268. doi: 10.3934/dcdss.2009.2.251

[7]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system . Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[8]

Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15

[9]

Sergei Ivanov. On Helly's theorem in geodesic spaces. Electronic Research Announcements, 2014, 21: 109-112. doi: 10.3934/era.2014.21.109

[10]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

[11]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[12]

Daniele Mundici. The Haar theorem for lattice-ordered abelian groups with order-unit. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 537-549. doi: 10.3934/dcds.2008.21.537

[13]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[14]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[15]

Randall Dougherty and Thomas Jech. Left-distributive embedding algebras. Electronic Research Announcements, 1997, 3: 28-37.

[16]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 413-425. doi: 10.3934/dcds.2008.22.413

[17]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

[18]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[19]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945

[20]

Fatiha Alabau-Boussouira, Piermarco Cannarsa. A constructive proof of Gibson's stability theorem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 611-617. doi: 10.3934/dcdss.2013.6.611

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

[Back to Top]