• Previous Article
    Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data
  • IPI Home
  • This Issue
  • Next Article
    On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions
October  2019, 13(5): 959-981. doi: 10.3934/ipi.2019043

On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena

1. 

Laboratory of Mathematics, Graduate School of Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan

2. 

Department of Mathematics, Graduate School of Sciences, Hiroshima University, Higashihiroshima 739-8526, Japan

Received  July 2018 Revised  March 2019 Published  July 2019

An inverse obstacle problem for the wave governed by the wave equation in a two layered medium is considered under the framework of the time domain enclosure method. The wave is generated by an initial data supported on a closed ball in the upper half-space, and observed on the same ball over a finite time interval. The unknown obstacle is penetrable and embedded in the lower half-space. It is assumed that the propagation speed of the wave in the upper half-space is greater than that of the wave in the lower half-space, which is excluded in the previous study: Ikehata and Kawashita, Inverse Problems and Imaging 12 (2018), no.5, 1173-1198. In the present case, when the reflected waves from the obstacle enter the upper half-space, the total reflection phenomena occur, which give singularities to the integral representation of the fundamental solution for the reduced transmission problem in the background medium. This fact makes the problem more complicated. However, it is shown that these waves do not have any influence on the leading profile of the indicator function of the time domain enclosure method.

Citation: Masaru Ikehata, Mishio Kawashita, Wakako Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena. Inverse Problems & Imaging, 2019, 13 (5) : 959-981. doi: 10.3934/ipi.2019043
References:
[1]

E. J. Baranoski, Through-wall imaging: Historical perspective and future directions, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (2008). doi: 10.1109/ICASSP.2008.4518824. Google Scholar

[2]

D. J. DanielsD. J. Gunton and H. F. Scott, Introduction to subsurface radar, IEE Proceedings, 135 (1988), 278-320. doi: 10.1049/ip-f-1.1988.0038. Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1. Google Scholar

[4]

F. Delbary, K. Erhard, R. Kress, R. Potthast and J. Schulz, Inverse electromagnetic scattering in a two-layered medium with an application to mine detection, Inverse Problems, 24 (2008), 015002 (18pp). doi: 10.1088/0266-5611/24/1/015002. Google Scholar

[5]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case, Applicable Analysis, 86 (2007), 963-1005. doi: 10.1080/00036810701460834. Google Scholar

[6]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval, Inverse Problems, 26 (2010), 055010 (20pp). doi: 10.1088/0266-5611/26/5/055010. Google Scholar

[7]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: Ⅱ. Obstacles with a dissipative boundary or finite refractive index and back-scattering data, Inverse Problems, 28 (2012), 045010 (29pp). doi: 10.1088/0266-5611/28/4/045010. Google Scholar

[8]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain, Inverse Problems, 31 (2015), 085011(21pp). doi: 10.1088/0266-5611/31/8/085011. Google Scholar

[9]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, as Chapter 6, in Inverse Problems and Computational Mechanics (eds. Marin, L., Munteanu, L., Chiroiu, V.), 2, Editura Academiei, 123–147, Bucharest, Romania, 2016.Google Scholar

[10]

M. Ikehata and M. Kawashita, On finding a buried obstacle in a layered medium via the time domain enclosure method, Inverse Problems and Imaging, 12 (2018), 1173-1198. doi: 10.3934/ipi.2018049. Google Scholar

[11]

J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006 (28pp). doi: 10.1088/0266-5611/31/10/105006. Google Scholar

[12]

X. Liu and B. Zhang, A uniqueness result for the inverse electromagnetic scattering problem in a two-layered medium, Inverse Problems, 26 (2010), 105007 (11pp). doi: 10.1088/0266-5611/26/10/105007. Google Scholar

show all references

References:
[1]

E. J. Baranoski, Through-wall imaging: Historical perspective and future directions, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (2008). doi: 10.1109/ICASSP.2008.4518824. Google Scholar

[2]

D. J. DanielsD. J. Gunton and H. F. Scott, Introduction to subsurface radar, IEE Proceedings, 135 (1988), 278-320. doi: 10.1049/ip-f-1.1988.0038. Google Scholar

[3]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1. Google Scholar

[4]

F. Delbary, K. Erhard, R. Kress, R. Potthast and J. Schulz, Inverse electromagnetic scattering in a two-layered medium with an application to mine detection, Inverse Problems, 24 (2008), 015002 (18pp). doi: 10.1088/0266-5611/24/1/015002. Google Scholar

[5]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case, Applicable Analysis, 86 (2007), 963-1005. doi: 10.1080/00036810701460834. Google Scholar

[6]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval, Inverse Problems, 26 (2010), 055010 (20pp). doi: 10.1088/0266-5611/26/5/055010. Google Scholar

[7]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: Ⅱ. Obstacles with a dissipative boundary or finite refractive index and back-scattering data, Inverse Problems, 28 (2012), 045010 (29pp). doi: 10.1088/0266-5611/28/4/045010. Google Scholar

[8]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain, Inverse Problems, 31 (2015), 085011(21pp). doi: 10.1088/0266-5611/31/8/085011. Google Scholar

[9]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, as Chapter 6, in Inverse Problems and Computational Mechanics (eds. Marin, L., Munteanu, L., Chiroiu, V.), 2, Editura Academiei, 123–147, Bucharest, Romania, 2016.Google Scholar

[10]

M. Ikehata and M. Kawashita, On finding a buried obstacle in a layered medium via the time domain enclosure method, Inverse Problems and Imaging, 12 (2018), 1173-1198. doi: 10.3934/ipi.2018049. Google Scholar

[11]

J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006 (28pp). doi: 10.1088/0266-5611/31/10/105006. Google Scholar

[12]

X. Liu and B. Zhang, A uniqueness result for the inverse electromagnetic scattering problem in a two-layered medium, Inverse Problems, 26 (2010), 105007 (11pp). doi: 10.1088/0266-5611/26/10/105007. Google Scholar

Figure 1.  Setting of the problem
Figure 2.  Contour of the integrals
Figure 3.  Propagation from the lower half-space
[1]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[2]

Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems & Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049

[3]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[4]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[5]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[6]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[7]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[8]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[9]

Masaru Ikehata. On finding the surface admittance of an obstacle via the time domain enclosure method. Inverse Problems & Imaging, 2019, 13 (2) : 263-284. doi: 10.3934/ipi.2019014

[10]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[11]

Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419

[12]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[13]

Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems & Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351

[14]

Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23

[15]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[16]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[17]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

[18]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[19]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[20]

Juan J. Manfredi, Julio D. Rossi, Stephanie J. Somersille. An obstacle problem for Tug-of-War games. Communications on Pure & Applied Analysis, 2015, 14 (1) : 217-228. doi: 10.3934/cpaa.2015.14.217

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (69)
  • HTML views (102)
  • Cited by (0)

[Back to Top]