• Previous Article
    An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration
  • IPI Home
  • This Issue
  • Next Article
    Electrical networks with prescribed current and applications to random walks on graphs
April 2019, 13(2): 337-351. doi: 10.3934/ipi.2019017

Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography

1. 

Institute of Applied Mathematical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

2. 

Institute of Applied Mathematics, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea

* Corresponding author

Received  April 2018 Revised  August 2018 Published  January 2019

Fund Project: The first author was supported in part by JSPS KAKENHI grant number 15K17572

We consider a boundary value problem of the stationary transport equation with the incoming boundary condition in two or three dimensional bounded convex domains. We discuss discontinuity of the solution to the boundary value problem arising from discontinuous incoming boundary data, which we call the boundary-induced discontinuity. In particular, we give two kinds of sufficient conditions on the incoming boundary data for the boundary-induced discontinuity. We propose a method to reconstruct the attenuation coefficient from jumps in boundary measurements.

Citation: I-Kun Chen, Daisuke Kawagoe. Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography. Inverse Problems & Imaging, 2019, 13 (2) : 337-351. doi: 10.3934/ipi.2019017
References:
[1]

V. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998. doi: 10.1007/978-1-4612-1994-1.

[2]

D. S. AnikonovI. V. Prokhorov and A. E. Kovtanyuk, Investigation of scattering and absorbing media by the methods of X-ray tomography, J. Inv. Ill-Posed Problems, 1 (1993), 259-281. doi: 10.1515/jiip.1993.1.4.259.

[3]

K. AokiC. BardosC. Dogbe and F. Golse, A note on the propagation of boundary induced discontinuities in kinetic theory, Math. Models Methods Appl. Sci., 11 (2001), 1581-1595. doi: 10.1142/S0218202501001483.

[4]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010, 59pp. doi: 10.1088/0266-5611/25/12/123010.

[5]

G. Bal and A. Jollivet, Stability estimates in stationary inverse transport, Inverse Probl. Imaging, 2 (2008), 427-454. doi: 10.3934/ipi.2008.2.427.

[6]

M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique, (French) [Trace theorems for neutronic function spaces], C. R. Acad. Sci. Paris, Sér. I, Math., 300 (1985), 89-92.

[7]

S. Chandrasekhar, Radiative Transfer, Dover Publications Inc., New York, 1960.

[8]

M. Choulli and P. Stefanov, An inverse boundary value problem for the stationary transport equation, Osaka J. Math., 36 (1999), 87-104.

[9]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), 713-809. doi: 10.1007/s00205-009-0285-y.

[10]

D. Kawagoe and I.-K. Chen, Propagation of boundary-induced discontinuity in stationary radiative transfer, J. Stat. Phys., 170 (2018), 127-140. doi: 10.1007/s10955-017-1922-8.

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, Germany, 2001. doi: 10.1137/1.9780898719284.

[12]

J. N. Wang, Stability estimates of an inverse problem for the stationary transport equation, Ann. Inst. Henri Poincaré, 70 (1999), 473-495.

show all references

References:
[1]

V. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998. doi: 10.1007/978-1-4612-1994-1.

[2]

D. S. AnikonovI. V. Prokhorov and A. E. Kovtanyuk, Investigation of scattering and absorbing media by the methods of X-ray tomography, J. Inv. Ill-Posed Problems, 1 (1993), 259-281. doi: 10.1515/jiip.1993.1.4.259.

[3]

K. AokiC. BardosC. Dogbe and F. Golse, A note on the propagation of boundary induced discontinuities in kinetic theory, Math. Models Methods Appl. Sci., 11 (2001), 1581-1595. doi: 10.1142/S0218202501001483.

[4]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010, 59pp. doi: 10.1088/0266-5611/25/12/123010.

[5]

G. Bal and A. Jollivet, Stability estimates in stationary inverse transport, Inverse Probl. Imaging, 2 (2008), 427-454. doi: 10.3934/ipi.2008.2.427.

[6]

M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique, (French) [Trace theorems for neutronic function spaces], C. R. Acad. Sci. Paris, Sér. I, Math., 300 (1985), 89-92.

[7]

S. Chandrasekhar, Radiative Transfer, Dover Publications Inc., New York, 1960.

[8]

M. Choulli and P. Stefanov, An inverse boundary value problem for the stationary transport equation, Osaka J. Math., 36 (1999), 87-104.

[9]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), 713-809. doi: 10.1007/s00205-009-0285-y.

[10]

D. Kawagoe and I.-K. Chen, Propagation of boundary-induced discontinuity in stationary radiative transfer, J. Stat. Phys., 170 (2018), 127-140. doi: 10.1007/s10955-017-1922-8.

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, Germany, 2001. doi: 10.1137/1.9780898719284.

[12]

J. N. Wang, Stability estimates of an inverse problem for the stationary transport equation, Ann. Inst. Henri Poincaré, 70 (1999), 473-495.

[1]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[2]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[3]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[4]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[5]

Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems & Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147

[6]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1297-1309. doi: 10.3934/dcdss.2019089

[7]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[8]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[9]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[10]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[11]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[12]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[13]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[14]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[15]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[16]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[17]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[18]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[19]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[20]

Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems & Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (22)
  • HTML views (76)
  • Cited by (0)

Other articles
by authors

[Back to Top]