April 2019, 13(2): 231-261. doi: 10.3934/ipi.2019013

Microlocal analysis of a spindle transform

1. 

Halligan Hall, 161 College Ave, Medford MA 02144, USA

2. 

Alan Turing Building, Oxford Road, Manchester, Greater Manchester M13 9PL, UK

Received  June 2017 Revised  October 2017 Published  January 2019

Fund Project: The first author is supported by Engineering and Physical Sciences Research Council and Rapiscan systems, CASE studentship
The second author is supported by Engineering and Physical Sciences Research Council (EP/M016773/1)

An analysis of the stability of the spindle transform, introduced in [16], is presented. We do this via a microlocal approach and show that the normal operator for the spindle transform is a type of paired Lagrangian operator with "blowdown–blowdown" singularities analogous to that of a limited data synthetic aperture radar (SAR) problem studied by Felea et. al. [4]. We find that the normal operator for the spindle transform belongs to a class of distibutions $ I^{p, l}(\Delta, \Lambda)+I^{p, l}(\widetilde{\Delta}, \Lambda) $ studied by Felea and Marhuenda in [4,10], where $ \widetilde{\Delta} $ is reflection through the origin, and $ \Lambda $ is associated to a rotation artefact. Later, we derive a filter to reduce the strength of the image artefact and show that it is of convolution type. We also provide simulated reconstructions to show the artefacts produced by $ \Lambda $ and show how the filter we derived can be applied to reduce the strength of the artefact.

Citation: James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013
References:
[1]

J. R. Driscoll and D. M. Healy, Computing Fourier transforms and convolutions on the 2-sphere, Advances in Applied Mathematics, 15 (1994), 202-250. doi: 10.1006/aama.1994.1008.

[2]

J. J. Duistermaat, Fourier Integral Operators, volume 130. Springer Science & Business Media, 1996.

[3]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Communications in Partial Differential Equations, 30 (2005), 1717-1740. doi: 10.1080/03605300500299968.

[4]

R. FeleaR. Gaburro and C. J. Nolan, Microlocal analysis of SAR imaging of a dynamic reflectivity function, SIAM Journal on Mathematical Analysis, 45 (2013), 2767-2789. doi: 10.1137/120873571.

[5]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Journal of Functional Analysis, 89 (1990), 202-232. doi: 10.1016/0022-1236(90)90011-9.

[6]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J, 48 (1981), 251-267. doi: 10.1215/S0012-7094-81-04814-6.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators. Corrected reprint of the 1985 original, Springer, 1994.

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition, Springer, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 2007. doi: 10.1007/978-3-540-49938-1.

[10]

F. Marhuenda, Microlocal analysis of some isospectral deformations, Transactions of the American Mathematical Society, 343 (1994), 245-275. doi: 10.1090/S0002-9947-1994-1181185-0.

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001. doi: 10.1137/1.9780898719284.

[12]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 099802, 1 p. doi: 10.1088/0266-5611/26/9/099802.

[13]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015. doi: 10.1063/1.357668.

[14]

V. P. Palamodov, An analytic reconstruction for the Compton scattering tomography in a plane, Inverse Problems, 27 (2011), 125004, 8pp. doi: 10.1088/0266-5611/27/12/125004.

[15]

R. T. Seeley, Spherical harmonics, The American Mathematical Monthly, 73 (1966), 115-121. doi: 10.1080/00029890.1966.11970927.

[16]

J. Webber and W. Lionheart, Three dimensional Compton scattering tomography, Inverse Problems, 34 (2018), arXiv: 1704.03378. doi: 10.1088/1361-6420/aac51e.

show all references

References:
[1]

J. R. Driscoll and D. M. Healy, Computing Fourier transforms and convolutions on the 2-sphere, Advances in Applied Mathematics, 15 (1994), 202-250. doi: 10.1006/aama.1994.1008.

[2]

J. J. Duistermaat, Fourier Integral Operators, volume 130. Springer Science & Business Media, 1996.

[3]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Communications in Partial Differential Equations, 30 (2005), 1717-1740. doi: 10.1080/03605300500299968.

[4]

R. FeleaR. Gaburro and C. J. Nolan, Microlocal analysis of SAR imaging of a dynamic reflectivity function, SIAM Journal on Mathematical Analysis, 45 (2013), 2767-2789. doi: 10.1137/120873571.

[5]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Journal of Functional Analysis, 89 (1990), 202-232. doi: 10.1016/0022-1236(90)90011-9.

[6]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J, 48 (1981), 251-267. doi: 10.1215/S0012-7094-81-04814-6.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators. Corrected reprint of the 1985 original, Springer, 1994.

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition, Springer, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 2007. doi: 10.1007/978-3-540-49938-1.

[10]

F. Marhuenda, Microlocal analysis of some isospectral deformations, Transactions of the American Mathematical Society, 343 (1994), 245-275. doi: 10.1090/S0002-9947-1994-1181185-0.

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001. doi: 10.1137/1.9780898719284.

[12]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 099802, 1 p. doi: 10.1088/0266-5611/26/9/099802.

[13]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015. doi: 10.1063/1.357668.

[14]

V. P. Palamodov, An analytic reconstruction for the Compton scattering tomography in a plane, Inverse Problems, 27 (2011), 125004, 8pp. doi: 10.1088/0266-5611/27/12/125004.

[15]

R. T. Seeley, Spherical harmonics, The American Mathematical Monthly, 73 (1966), 115-121. doi: 10.1080/00029890.1966.11970927.

[16]

J. Webber and W. Lionheart, Three dimensional Compton scattering tomography, Inverse Problems, 34 (2018), arXiv: 1704.03378. doi: 10.1088/1361-6420/aac51e.

Figure 1.  A spindle torus with axis of rotation $ \theta $, tube centre offset $ r $ and tube radius $ \sqrt{1+r^2} $. The distance between the origin and either of the points where the torus self intersects is 1
Figure 2.  Small bead
Figure 3.  Bead reconstruction by backprojection
Figure 4.  Bead reconstruction by filtered backprojection, with $ L = 25 $ components
Figure 5.  Bead reconstruction by backprojection, truncating the data to $ L = 25 $ components
Figure 6.  Layered spherical shell segment phantom, centred at the origin
Figure 7.  Layered plane phantom
Figure 8.  Layered spherical shell segment CGLS reconstruction
Figure 9.  Layered spherical shell segment CGLS reconstruction, with $ Q^{\frac{1}{2}} $ used as a pre–conditioner and no added Tikhonov regularisation
Figure 10.  Layered plane reconstruction by CGLS
Figure 11.  Layered plane reconstruction by Landweber iteration
Figure 12.  Spherical shell reconstruction by Landweber iteration
Figure 13.  Spherical shell reconstruction by Landweber iteration, with $ Q^{\frac{1}{2}} $ used as a pre–conditioner
[1]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[2]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[3]

Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems & Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811

[4]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[5]

Meghdoot Mozumder, Tanja Tarvainen, Simon Arridge, Jari P. Kaipio, Cosimo D'Andrea, Ville Kolehmainen. Approximate marginalization of absorption and scattering in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2016, 10 (1) : 227-246. doi: 10.3934/ipi.2016.10.227

[6]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[7]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[8]

Patricio Felmer, Alexander Quaas. Fundamental solutions for a class of Isaacs integral operators. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 493-508. doi: 10.3934/dcds.2011.30.493

[9]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[10]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[11]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[12]

Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks & Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009

[13]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[14]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[15]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[16]

Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453

[17]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[18]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[19]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[20]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (44)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]