• Previous Article
    A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data
  • IPI Home
  • This Issue
  • Next Article
    A connection between uniqueness of minimizers in Tikhonov-type regularization and Morozov-like discrepancy principles
February 2019, 13(1): 197-210. doi: 10.3934/ipi.2019011

Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators

1. 

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China

2. 

Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylä, Finland

3. 

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China

Received  May 2018 Revised  October 2018 Published  December 2018

Let $A∈{\rm{Sym}}(n× n)$ be an elliptic 2-tensor. Consider the anisotropic fractional Schrödinger operator $\mathscr{L}_A^s+q$, where $\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$, $s∈ (0, 1)$ and $q∈ L^∞$. We are concerned with the simultaneous recovery of $q$ and possibly embedded soft or hard obstacles inside $q$ by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain $Ω$ associated with $\mathscr{L}_A^s+q$. It is shown that a single measurement can uniquely determine the embedded obstacle, independent of the surrounding potential $q$. If multiple measurements are allowed, then the surrounding potential $q$ can also be uniquely recovered. These are surprising findings since in the local case, namely $s = 1$, both the obstacle recovery by a single measurement and the simultaneous recovery of the surrounding potential by multiple measurements are long-standing problems and still remain open in the literature. Our argument for the nonlocal inverse problem is mainly based on the strong uniqueness property and Runge approximation property for anisotropic fractional Schrödinger operators.

Citation: Xinlin Cao, Yi-Hsuan Lin, Hongyu Liu. Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators. Inverse Problems & Imaging, 2019, 13 (1) : 197-210. doi: 10.3934/ipi.2019011
References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single farfield measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691. Corrigendum: Preprtint arXiv math.AP/0601406, 2006. doi: 10.1090/S0002-9939-05-07810-X.

[2]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 33 (2016), 767-807. doi: 10.1016/j.anihpc.2015.01.004.

[3]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003), 1361-1384. doi: 10.1088/0266-5611/19/6/008.

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[5]

T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Communications in Partial Differential Equations, 42 (2017), 1923-1961. doi: 10.1080/03605302.2017.1390681.

[6]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv: 1609.09248.

[7]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation, arXiv: 1711.05641.

[8]

N. HondaG. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427. doi: 10.1007/s00208-012-0786-0.

[9]

O. ImanuvilovG. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., 23 (2010), 655-691. doi: 10.1090/S0894-0347-10-00656-9.

[10]

V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edition, Applied Mathematical Sciences, 127, Springer-Verlag, New York, 2006.

[11]

C. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math.(2), 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567.

[12]

A. Kirsch X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005, 19pp. doi: 10.1088/0266-5611/29/6/065005.

[13]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 619-651. doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[14]

R.-Y. Lai and Y.-H. Lin, Global uniqueness for the semilinear fractional Schrödinger equation, arXiv: 1710.07404.

[15]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33 (2017), 065001, 20pp. doi: 10.1088/1361-6420/aa6770.

[16]

H. LiuM. PetriniL. Rondi and J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, J. Differential Equations, 262 (2017), 1631-1670. doi: 10.1016/j.jde.2016.10.021.

[17]

H. LiuH. Zhao and C. Zou, Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13 (2015), 987-1000. doi: 10.4310/CMS.2015.v13.n4.a7.

[18]

X. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120. doi: 10.1137/090777578.

[19]

H. Liu and J. Zou, Uniqueness in an inverse acoustic scatterer scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524. doi: 10.1088/0266-5611/22/2/008.

[20]

H. Liu and J. Zou, On unique determination of partially coated polyhedral scatterers with far-field measurements, Inverse Problems, 23 (2007), 297-308. doi: 10.1088/0266-5611/23/1/016.

[21]

H. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems, J. Phys.: Conf. Ser., 124 012006.

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.

[23]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[24]

S. O'Dell, Inverse scattering for the Laplace-Beltrami operator with complex electromagnetic potentials and embedded obstacles, Inverse Problems, 22 (2006), 1579-1603. doi: 10.1088/0266-5611/22/5/005.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Volume 44, Springer Science & Business Media, 2012.

[26]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements, Indiana Univ. Math. J., 52 (2003), 1631-1662. doi: 10.1512/iumj.2003.52.2394.

[27]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement, Indiana Univ. Math. J., 57 (2008), 1377-1408. doi: 10.1512/iumj.2008.57.3217.

[28]

W. Rudin, Functional Analysis, New York-Düsseldorf-Johannesburg, 1973.

[29]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21 pp, arXiv: 1711.04799. doi: 10.1088/1361-6420/aaac5a.

[30]

A. Rüland and M. Salo, The fractional Calderón problem: low regularity and stability, arXiv: 1708.06294.

[31]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

show all references

References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single farfield measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691. Corrigendum: Preprtint arXiv math.AP/0601406, 2006. doi: 10.1090/S0002-9939-05-07810-X.

[2]

L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 33 (2016), 767-807. doi: 10.1016/j.anihpc.2015.01.004.

[3]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003), 1361-1384. doi: 10.1088/0266-5611/19/6/008.

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.

[5]

T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Communications in Partial Differential Equations, 42 (2017), 1923-1961. doi: 10.1080/03605302.2017.1390681.

[6]

T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv: 1609.09248.

[7]

B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation, arXiv: 1711.05641.

[8]

N. HondaG. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427. doi: 10.1007/s00208-012-0786-0.

[9]

O. ImanuvilovG. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., 23 (2010), 655-691. doi: 10.1090/S0894-0347-10-00656-9.

[10]

V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edition, Applied Mathematical Sciences, 127, Springer-Verlag, New York, 2006.

[11]

C. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math.(2), 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567.

[12]

A. Kirsch X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005, 19pp. doi: 10.1088/0266-5611/29/6/065005.

[13]

A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 619-651. doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.

[14]

R.-Y. Lai and Y.-H. Lin, Global uniqueness for the semilinear fractional Schrödinger equation, arXiv: 1710.07404.

[15]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33 (2017), 065001, 20pp. doi: 10.1088/1361-6420/aa6770.

[16]

H. LiuM. PetriniL. Rondi and J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, J. Differential Equations, 262 (2017), 1631-1670. doi: 10.1016/j.jde.2016.10.021.

[17]

H. LiuH. Zhao and C. Zou, Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13 (2015), 987-1000. doi: 10.4310/CMS.2015.v13.n4.a7.

[18]

X. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120. doi: 10.1137/090777578.

[19]

H. Liu and J. Zou, Uniqueness in an inverse acoustic scatterer scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524. doi: 10.1088/0266-5611/22/2/008.

[20]

H. Liu and J. Zou, On unique determination of partially coated polyhedral scatterers with far-field measurements, Inverse Problems, 23 (2007), 297-308. doi: 10.1088/0266-5611/23/1/016.

[21]

H. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems, J. Phys.: Conf. Ser., 124 012006.

[22]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.

[23]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[24]

S. O'Dell, Inverse scattering for the Laplace-Beltrami operator with complex electromagnetic potentials and embedded obstacles, Inverse Problems, 22 (2006), 1579-1603. doi: 10.1088/0266-5611/22/5/005.

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Volume 44, Springer Science & Business Media, 2012.

[26]

L. Rondi, Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements, Indiana Univ. Math. J., 52 (2003), 1631-1662. doi: 10.1512/iumj.2003.52.2394.

[27]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement, Indiana Univ. Math. J., 57 (2008), 1377-1408. doi: 10.1512/iumj.2008.57.3217.

[28]

W. Rudin, Functional Analysis, New York-Düsseldorf-Johannesburg, 1973.

[29]

A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21 pp, arXiv: 1711.04799. doi: 10.1088/1361-6420/aaac5a.

[30]

A. Rüland and M. Salo, The fractional Calderón problem: low regularity and stability, arXiv: 1708.06294.

[31]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

[1]

Bo Su. Doubling property of elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 143-147. doi: 10.3934/cpaa.2008.7.143

[2]

Mikhail Krastanov, Michael Malisoff, Peter Wolenski. On the strong invariance property for non-Lipschitz dynamics. Communications on Pure & Applied Analysis, 2006, 5 (1) : 107-124. doi: 10.3934/cpaa.2006.5.107

[3]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[4]

Shingo Takeuchi. The basis property of generalized Jacobian elliptic functions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2675-2692. doi: 10.3934/cpaa.2014.13.2675

[5]

Zdzisław Brzeźniak, Paul André Razafimandimby. Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1051-1077. doi: 10.3934/dcdsb.2016.21.1051

[6]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[7]

Michael Röckner, Jiyong Shin, Gerald Trutnau. Non-symmetric distorted Brownian motion: Strong solutions, strong Feller property and non-explosion results. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3219-3237. doi: 10.3934/dcdsb.2016095

[8]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[9]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[10]

Huajun Tang, T. C. Edwin Cheng, Chi To Ng. A note on the subtree ordered median problem in networks based on nestedness property. Journal of Industrial & Management Optimization, 2012, 8 (1) : 41-49. doi: 10.3934/jimo.2012.8.41

[11]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[12]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[13]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[14]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[15]

Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581

[16]

Pablo Sánchez, Jaume Sempere. Conflict, private and communal property. Journal of Dynamics & Games, 2016, 3 (4) : 355-369. doi: 10.3934/jdg.2016019

[17]

Kazumine Moriyasu, Kazuhiro Sakai, Kenichiro Yamamoto. Regular maps with the specification property. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2991-3009. doi: 10.3934/dcds.2013.33.2991

[18]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[19]

Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110

[20]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

2017 Impact Factor: 1.465

Article outline

[Back to Top]