December 2018, 12(6): 1411-1428. doi: 10.3934/ipi.2018059

Inverse source problems in electrodynamics

1. 

Beijing Computational Science Research Center, Building 9, East Zone, ZPark Ⅱ, No.10 Xibeiwang East Road, Haidian District, Beijing 100193, China

2. 

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA

3. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

4. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

* Corresponding author: Yue Zhao

Received  January 2018 Revised  July 2018 Published  October 2018

Fund Project: The research of PL was supported in part by the NSF grant DMS-1151308. The work of GH is supported by the NSFC grant (No. 11671028) and NSAF grant (No. U1530401). The research of XL is supported by the NNSF of China under grant 11571355 and the Youth Innovation Promotion Association, CAS

This paper concerns inverse source problems for the time-dependent Maxwell equations. The electric current density is assumed to be the product of a spatial function and a temporal function. We prove uniqueness and stability in determining the spatial or temporal function from the electric field, which is measured on a sphere or at a point over a finite time interval.

Citation: Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059
References:
[1]

R. Albanese and P. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035. doi: 10.1088/0266-5611/22/3/018.

[2]

A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, arXiv: 1712.02654v1, 2017.

[3]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press: Princeton, 2015. doi: 10.1515/9781400866625.

[4]

H. AmmariG. Bao and J. Flemming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382. doi: 10.1137/S0036139900373927.

[5]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861. doi: 10.1137/S0036141098343604.

[6]

Yu. E. AnikonovJ. Cheng and M. Yamamoto, A uniqueness result in an inverse hyperbolic problem with analyticity, European J. Appl. Math., 15 (2004), 533-543. doi: 10.1017/S0956792504005649.

[7]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022.

[8]

G. Bao, G. Hu, Y. Kian and T. Yin, Inverse source problems in elastodynamics, Inverse Problems, 34 (2018), 045009, 31pp. doi: 10.1088/1361-6420/aaaf7e.

[9]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001.

[10]

G. Bao, P. Li and Y. Zhao, Stability in the inverse source problem for elastic and electromagnetic waves with multi-frequencies, preprint.

[11]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013.

[12]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Computational Mathematics, 26 (2008), 284-296.

[13]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030.

[14]

X. DengX. Cai and J. Zou, A parallel space-time domain decomposition method for unsteady source inversion problems, Inverse Probl. Imaging, 9 (2015), 1069-1091. doi: 10.3934/ipi.2015.9.1069.

[15]

X. DengX. Cai and J. Zou, Two-level space-time domain decomposition methods for three-dimensional unsteady inverse source problems, J. Sci. Comput., 67 (2016), 860-882. doi: 10.1007/s10915-015-0109-1.

[16]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042. doi: 10.1109/TAP.1982.1142902.

[17]

M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005.

[18]

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE press, Prentice-Hall, 1973.

[19]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967. doi: 10.1088/0266-5611/21/3/010.

[20]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989. doi: 10.1090/surv/034.

[21]

J. Jackson, Classical Electrodynamics, Second edition, John Wiley and Sons, Inc., New York-London-Sydney, 1975.

[22]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596. doi: 10.1088/0266-5611/8/4/009.

[23]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887. doi: 10.1016/j.jmaa.2017.01.074.

[24]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759. doi: 10.3934/ipi.2017035.

[25]

S. Li, Carleman estimates for second order hyperbolic systems in anisotropic cases and an inverse source problem. Part Ⅱ: an inverse source problem, Applicable Analysis, 94 (2015), 2287-2307. doi: 10.1080/00036811.2014.986847.

[26]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media, Applicable Analysis, 84 (2005), 1051-1067. doi: 10.1080/00036810500047725.

[27]

K. LiuY. Xu and J. Zou, A multilevel sampling method for detecting sources in a stratified ocean waveguide, J. Comput. Appl. Math., 309 (2017), 95-110. doi: 10.1016/j.cam.2016.06.039.

[28]

E. Marx and D. Maystre, Dyadic Green functions for the time-dependent wave equation, J. Math. Phys., 23 (1982), 1047-1056. doi: 10.1063/1.525493.

[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York, 2000.

[30]

R. Nevels and J. Jeong, Time domain coupled field dyadic Green function solution for Maxwell's equations, IEEE Transactions on Antennas and Propagation, 56 (2008), 2761-2764. doi: 10.1109/TAP.2008.927574.

[31]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7.

[32]

A. G. Ramm and E. Somersalo, Electromagnetic inverse problem with surface measurements at low frequencies, Inverse Problems, 5 (1989), 1107-1116. doi: 10.1088/0266-5611/5/6/016.

[33]

V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell's Equations, VSP, Utrecht, 1994. doi: 10.1515/9783110900101.

[34]

M. Yamamoto, On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse Probl. Tomograph. Image Process, New York, Plenum Press, 15 (1998), 241–256.

[35]

Y. Zhao and P. Li, Stability on the one-dimensional inverse source scattering problem in a two-layered medium, Applicable Analysis, to appear.

show all references

References:
[1]

R. Albanese and P. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035. doi: 10.1088/0266-5611/22/3/018.

[2]

A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, arXiv: 1712.02654v1, 2017.

[3]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press: Princeton, 2015. doi: 10.1515/9781400866625.

[4]

H. AmmariG. Bao and J. Flemming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382. doi: 10.1137/S0036139900373927.

[5]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861. doi: 10.1137/S0036141098343604.

[6]

Yu. E. AnikonovJ. Cheng and M. Yamamoto, A uniqueness result in an inverse hyperbolic problem with analyticity, European J. Appl. Math., 15 (2004), 533-543. doi: 10.1017/S0956792504005649.

[7]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022.

[8]

G. Bao, G. Hu, Y. Kian and T. Yin, Inverse source problems in elastodynamics, Inverse Problems, 34 (2018), 045009, 31pp. doi: 10.1088/1361-6420/aaaf7e.

[9]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001.

[10]

G. Bao, P. Li and Y. Zhao, Stability in the inverse source problem for elastic and electromagnetic waves with multi-frequencies, preprint.

[11]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013.

[12]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Computational Mathematics, 26 (2008), 284-296.

[13]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030.

[14]

X. DengX. Cai and J. Zou, A parallel space-time domain decomposition method for unsteady source inversion problems, Inverse Probl. Imaging, 9 (2015), 1069-1091. doi: 10.3934/ipi.2015.9.1069.

[15]

X. DengX. Cai and J. Zou, Two-level space-time domain decomposition methods for three-dimensional unsteady inverse source problems, J. Sci. Comput., 67 (2016), 860-882. doi: 10.1007/s10915-015-0109-1.

[16]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042. doi: 10.1109/TAP.1982.1142902.

[17]

M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005.

[18]

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE press, Prentice-Hall, 1973.

[19]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967. doi: 10.1088/0266-5611/21/3/010.

[20]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989. doi: 10.1090/surv/034.

[21]

J. Jackson, Classical Electrodynamics, Second edition, John Wiley and Sons, Inc., New York-London-Sydney, 1975.

[22]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596. doi: 10.1088/0266-5611/8/4/009.

[23]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887. doi: 10.1016/j.jmaa.2017.01.074.

[24]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759. doi: 10.3934/ipi.2017035.

[25]

S. Li, Carleman estimates for second order hyperbolic systems in anisotropic cases and an inverse source problem. Part Ⅱ: an inverse source problem, Applicable Analysis, 94 (2015), 2287-2307. doi: 10.1080/00036811.2014.986847.

[26]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media, Applicable Analysis, 84 (2005), 1051-1067. doi: 10.1080/00036810500047725.

[27]

K. LiuY. Xu and J. Zou, A multilevel sampling method for detecting sources in a stratified ocean waveguide, J. Comput. Appl. Math., 309 (2017), 95-110. doi: 10.1016/j.cam.2016.06.039.

[28]

E. Marx and D. Maystre, Dyadic Green functions for the time-dependent wave equation, J. Math. Phys., 23 (1982), 1047-1056. doi: 10.1063/1.525493.

[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York, 2000.

[30]

R. Nevels and J. Jeong, Time domain coupled field dyadic Green function solution for Maxwell's equations, IEEE Transactions on Antennas and Propagation, 56 (2008), 2761-2764. doi: 10.1109/TAP.2008.927574.

[31]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7.

[32]

A. G. Ramm and E. Somersalo, Electromagnetic inverse problem with surface measurements at low frequencies, Inverse Problems, 5 (1989), 1107-1116. doi: 10.1088/0266-5611/5/6/016.

[33]

V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell's Equations, VSP, Utrecht, 1994. doi: 10.1515/9783110900101.

[34]

M. Yamamoto, On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse Probl. Tomograph. Image Process, New York, Plenum Press, 15 (1998), 241–256.

[35]

Y. Zhao and P. Li, Stability on the one-dimensional inverse source scattering problem in a two-layered medium, Applicable Analysis, to appear.

Figure 1.  (left): A Gaussian-modulated sinusoidal pulse function $\chi$ with $\omega = 6$, $\sigma = 1.6$, $\tau = 3$; (right): Fourier spectrum of $\chi$
[1]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[2]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[3]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[4]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[5]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[6]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[7]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[8]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[9]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[10]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[11]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[12]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[13]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[14]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[15]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[16]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[17]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[18]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[19]

Michel Cristofol, Jimmy Garnier, François Hamel, Lionel Roques. Uniqueness from pointwise observations in a multi-parameter inverse problem. Communications on Pure & Applied Analysis, 2012, 11 (1) : 173-188. doi: 10.3934/cpaa.2012.11.173

[20]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (11)
  • HTML views (20)
  • Cited by (0)

Other articles
by authors

[Back to Top]