• Previous Article
    A variational model with fractional-order regularization term arising in registration of diffusion tensor image
  • IPI Home
  • This Issue
  • Next Article
    Stability estimates for a magnetic Schrödinger operator with partial data
December 2018, 12(6): 1293-1308. doi: 10.3934/ipi.2018054

Reconstruction of the coefficients of a star graph from observations of its vertices

Department of Mathematics, University of West Georgia, GA 30118, USA

Received  December 2016 Revised  March 2018 Published  October 2018

Consider a three-edge star graph, made up of unknown Sturm-Liouville operators on each edge. By using the heat propagation through the graph and measuring the heat transfer occurring at its vertices, we show that we can extract enough spectral data to reconstruct the three Sturm-Liouville operators by using the Gelfand-Levitan theory. Furthermore this reconstruction is achieved by a single measurement provided we use a special initial condition.

Citation: Amin Boumenir, Vu Kim Tuan. Reconstruction of the coefficients of a star graph from observations of its vertices. Inverse Problems & Imaging, 2018, 12 (6) : 1293-1308. doi: 10.3934/ipi.2018054
References:
[1]

S. Avdonin and J. Bell, Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Inverse Probl. Imaging, 9 (2015), 645-659. doi: 10.3934/ipi.2015.9.645.

[2]

S. AvdoninJ. Bell and K. Nurtazina, Determining distributed parameters in a neuronal cable model on a tree graph, Math. Methods Appl. Sci., 40 (2017), 3973-3981.

[3]

S. Avdonin and S. Nicaise, Source identification for the wave equation on graphs, C. R. Math. Acad. Sci. Paris, 352 (2014), 907-912. doi: 10.1016/j.crma.2014.09.008.

[4]

S. AvdoninF. Gesztesy and K. Makarov, Spectral estimation and inverse initial boundary value problems, Inverse Probl. Imaging, 4 (2010), 1-9. doi: 10.3934/ipi.2010.4.1.

[5]

S. Avdonin and A. Bulanova, Boundary control approach to the spectral estimation problem: The case of multiple poles, Math. Control Signals Systems, 22 (2011), 245-265. doi: 10.1007/s00498-010-0052-5.

[6]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21. doi: 10.3934/ipi.2008.2.1.

[7]

S. AvdoninP. Kurasov and M. Nowaczyk, Inverse problems for quantum trees Ⅱ: Recovering matching conditions for star graphs, Inverse Probl. Imaging, 4 (2010), 579-598. doi: 10.3934/ipi.2010.4.579.

[8]

A. Boumenir, Higher approximation of eigenvalues by sampling, BIT, 40 (2000), 215-225. doi: 10.1023/A:1022334806027.

[9]

A. Boumenir, Irregular sampling and the inverse spectral problem, J. Fourier Anal. Appl., 5 (1999), 373-383. doi: 10.1007/BF01259378.

[10]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 3911-3921. doi: 10.1090/S0002-9939-2010-10297-6.

[11]

A. Boumenir and V. Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 775-791. doi: 10.3934/ipi.2011.5.775.

[12]

R. Carlson and V. Pivovarchik, Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys. A: Math. Theor., 41 (2008), 145202, 16 pp. doi: 10.1088/1751-8113/41/14/145202.

[13]

I. Kac and V. Pivovarchik, On multiplicity of a quantum graph spectrum, J. Phys. A: Math. Theor., 44 (2011), 105301, 14 pp. doi: 10.1088/1751-8113/44/10/105301.

[14]

H. P. Kramer, A generalized sampling theorem, J. Math. Phys., 38 (1959), 68-72. doi: 10.1002/sapm195938168.

[15]

B. M. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.

[16]

B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surveys, 19 (1964), 3-63.

[17]

V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986. doi: 10.1007/978-3-0348-5485-6.

[18]

V. Pivovarchik and H. Woracek, Eigenvalue asymptotics for a star-graph damped vibrations problem, Asymptot. Anal., 73 (2011), 169-185.

[19]

V. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32 (2000), 801-819. doi: 10.1137/S0036141000368247.

[20]

V. Kim Tuan and N. Thanh Hong, Interpolation in the Hardy space, Integral Transforms Spec. Funct., 24 (2013), 664-671. doi: 10.1080/10652469.2012.749874.

[21]

A. Zayed, Advances in Shannon's Sampling Theory, CRC Press, 1993.

show all references

References:
[1]

S. Avdonin and J. Bell, Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph, Inverse Probl. Imaging, 9 (2015), 645-659. doi: 10.3934/ipi.2015.9.645.

[2]

S. AvdoninJ. Bell and K. Nurtazina, Determining distributed parameters in a neuronal cable model on a tree graph, Math. Methods Appl. Sci., 40 (2017), 3973-3981.

[3]

S. Avdonin and S. Nicaise, Source identification for the wave equation on graphs, C. R. Math. Acad. Sci. Paris, 352 (2014), 907-912. doi: 10.1016/j.crma.2014.09.008.

[4]

S. AvdoninF. Gesztesy and K. Makarov, Spectral estimation and inverse initial boundary value problems, Inverse Probl. Imaging, 4 (2010), 1-9. doi: 10.3934/ipi.2010.4.1.

[5]

S. Avdonin and A. Bulanova, Boundary control approach to the spectral estimation problem: The case of multiple poles, Math. Control Signals Systems, 22 (2011), 245-265. doi: 10.1007/s00498-010-0052-5.

[6]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Probl. Imaging, 2 (2008), 1-21. doi: 10.3934/ipi.2008.2.1.

[7]

S. AvdoninP. Kurasov and M. Nowaczyk, Inverse problems for quantum trees Ⅱ: Recovering matching conditions for star graphs, Inverse Probl. Imaging, 4 (2010), 579-598. doi: 10.3934/ipi.2010.4.579.

[8]

A. Boumenir, Higher approximation of eigenvalues by sampling, BIT, 40 (2000), 215-225. doi: 10.1023/A:1022334806027.

[9]

A. Boumenir, Irregular sampling and the inverse spectral problem, J. Fourier Anal. Appl., 5 (1999), 373-383. doi: 10.1007/BF01259378.

[10]

A. Boumenir and Vu Kim Tuan, An inverse problem for the heat equation, Proc. Amer. Math. Soc., 138 (2010), 3911-3921. doi: 10.1090/S0002-9939-2010-10297-6.

[11]

A. Boumenir and V. Kim Tuan, Recovery of the heat coefficient by two measurements, Inverse Problems and Imaging, 5 (2011), 775-791. doi: 10.3934/ipi.2011.5.775.

[12]

R. Carlson and V. Pivovarchik, Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys. A: Math. Theor., 41 (2008), 145202, 16 pp. doi: 10.1088/1751-8113/41/14/145202.

[13]

I. Kac and V. Pivovarchik, On multiplicity of a quantum graph spectrum, J. Phys. A: Math. Theor., 44 (2011), 105301, 14 pp. doi: 10.1088/1751-8113/44/10/105301.

[14]

H. P. Kramer, A generalized sampling theorem, J. Math. Phys., 38 (1959), 68-72. doi: 10.1002/sapm195938168.

[15]

B. M. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.

[16]

B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two of its spectra, Russ. Math. Surveys, 19 (1964), 3-63.

[17]

V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986. doi: 10.1007/978-3-0348-5485-6.

[18]

V. Pivovarchik and H. Woracek, Eigenvalue asymptotics for a star-graph damped vibrations problem, Asymptot. Anal., 73 (2011), 169-185.

[19]

V. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32 (2000), 801-819. doi: 10.1137/S0036141000368247.

[20]

V. Kim Tuan and N. Thanh Hong, Interpolation in the Hardy space, Integral Transforms Spec. Funct., 24 (2013), 664-671. doi: 10.1080/10652469.2012.749874.

[21]

A. Zayed, Advances in Shannon's Sampling Theory, CRC Press, 1993.

[1]

Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405

[2]

N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050

[3]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[4]

Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052

[5]

Leonid Golinskii, Mikhail Kudryavtsev. An inverse spectral theory for finite CMV matrices. Inverse Problems & Imaging, 2010, 4 (1) : 93-110. doi: 10.3934/ipi.2010.4.93

[6]

Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018145

[7]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[8]

Huilian Jia, Lihe Wang, Fengping Yao, Shulin Zhou. Regularity theory in Orlicz spaces for the poisson and heat equations. Communications on Pure & Applied Analysis, 2008, 7 (2) : 407-416. doi: 10.3934/cpaa.2008.7.407

[9]

Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025

[10]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[11]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[12]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[13]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems & Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[14]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[15]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[16]

Shi Jin, Dongsheng Yin. Computational high frequency wave diffraction by a corner via the Liouville equation and geometric theory of diffraction. Kinetic & Related Models, 2011, 4 (1) : 295-316. doi: 10.3934/krm.2011.4.295

[17]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[18]

Michel Cristofol, Jimmy Garnier, François Hamel, Lionel Roques. Uniqueness from pointwise observations in a multi-parameter inverse problem. Communications on Pure & Applied Analysis, 2012, 11 (1) : 173-188. doi: 10.3934/cpaa.2012.11.173

[19]

Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277

[20]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

2017 Impact Factor: 1.465

Article outline

[Back to Top]