October 2018, 12(5): 1245-1262. doi: 10.3934/ipi.2018052

Stability estimates in tensor tomography

1. 

Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

2. 

Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russia

3. 

Novosibirsk State University, 2 Pirogov street, Novosibirsk, 630090, Russia

* Corresponding author: Vladimir Sharafutdinov

Received  October 2017 Published  July 2018

Fund Project: The second author was supported by RFBR, Grant 17-51-150001

We study the X-ray transform $I$ of symmetric tensor fields on a smooth convex bounded domain $Ω\subset{\mathbb R}^n$. The main result is the stability estimate $\|^{s}f\|_{L^2}≤ C\|If\|_{H^{1/2}}$, where $^{s}f$ is the solenoidal part of the tensor field $f$. The proof is based on a comparison of the Dirichlet integrals for the exterior and interior Dirichlet problems and on a generalization of the Korn inequality to symmetric tensor fields of arbitrary rank.

Citation: Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052
References:
[1]

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

[2]

G. Fichera, Existence Theorems in Elasticity, Springer, 1972.

[3]

K. O. Friedrichs, On the boundary value problems of the theory of elasticity and Korn's inequality, Ann. Math., 48 (1947), 441-471. doi: 10.2307/1969180.

[4]

J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité, Bull. de la Roy. des Sci. de Liège, 31 (1962), 182-191.

[5]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1, Springer, 1983. doi: 10.1007/978-3-642-96750-4.

[6]

V. A. Kondrat'ev and O. A. Oleinik, Boundary value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russian Mathematical Surveys, 43 (1988), 65-120. doi: 10.1070/RM1988v043n05ABEH001945.

[7]

A. Korn, Solution générale du problème d'équilibre dans la théorie de l'élasticité dans le cas où les efforts sont donnés à la surface, in Ann. Fac. Sci. Univ. Toulouse, 10 (1908), 165–269. doi: 10.5802/afst.251.

[8]

W. Lionheart and V. Sharafutdinov, Reconstruction algorithm for the linearized polarization tomography problem with incomplete data, in Imaging Microstructures: Mathematical and Computational Challenges, (eds. H. Ammari and Hyeonbae Kang), Contemporary Mathematics, 494 (2009), 137–159. doi: 10.1090/conm/494/09648.

[9]

S. G. Mikhlin, Variational Methods in Mathematical Physics, Oxford, Pergamon Press, 1964.

[10]

F. Natterer, The Mathematics of Computerized Tomography, John Willey & Sons, 1986.

[11]

L. E. Payne and H. F. Weinberger, On Korn's inequality, Arch. Rat. Mech. Anal., 8 (1961), 89-98. doi: 10.1007/BF00277432.

[12]

L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Siberian Math. J., 29 (1988), 427-441. doi: 10.1007/BF00969652.

[13]

Yu. G. Reshetnyak, Estimates for certain differential operators with finite-dimensional kernel, Siberian Math. J., 11 (1970), 315-326.

[14]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994. doi: 10.1515/9783110900095.

[15]

V. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002 (20 pp). doi: 10.1088/1361-6420/33/2/025002.

[16]

V. SharafutdinovM. Skokan and G. Uhlmann, Regularity of ghosts in tensor tomography, J. Geom. Anal., 15 (2005), 499-542. doi: 10.1007/BF02930983.

[17]

V. Sharafutdinov and J. Wang J, Tomography of small residual stresses, Inverse Problems, 28 (2012), 065017, 17 pp. doi: 10.1088/0266-5611/28/6/065017.

[18]

P. Stefanov, A sharp stability estimate in tensor tomography, in J. of Physics: Conference Series, 124 (2008), 012007. doi: 10.1088/1742-6596/124/1/012007.

[19]

M. E. Taylor, Partial Differential Equations I. Basic Theory, Texts in Applied Mathematics, 23. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.

show all references

References:
[1]

G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.

[2]

G. Fichera, Existence Theorems in Elasticity, Springer, 1972.

[3]

K. O. Friedrichs, On the boundary value problems of the theory of elasticity and Korn's inequality, Ann. Math., 48 (1947), 441-471. doi: 10.2307/1969180.

[4]

J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité, Bull. de la Roy. des Sci. de Liège, 31 (1962), 182-191.

[5]

L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1, Springer, 1983. doi: 10.1007/978-3-642-96750-4.

[6]

V. A. Kondrat'ev and O. A. Oleinik, Boundary value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russian Mathematical Surveys, 43 (1988), 65-120. doi: 10.1070/RM1988v043n05ABEH001945.

[7]

A. Korn, Solution générale du problème d'équilibre dans la théorie de l'élasticité dans le cas où les efforts sont donnés à la surface, in Ann. Fac. Sci. Univ. Toulouse, 10 (1908), 165–269. doi: 10.5802/afst.251.

[8]

W. Lionheart and V. Sharafutdinov, Reconstruction algorithm for the linearized polarization tomography problem with incomplete data, in Imaging Microstructures: Mathematical and Computational Challenges, (eds. H. Ammari and Hyeonbae Kang), Contemporary Mathematics, 494 (2009), 137–159. doi: 10.1090/conm/494/09648.

[9]

S. G. Mikhlin, Variational Methods in Mathematical Physics, Oxford, Pergamon Press, 1964.

[10]

F. Natterer, The Mathematics of Computerized Tomography, John Willey & Sons, 1986.

[11]

L. E. Payne and H. F. Weinberger, On Korn's inequality, Arch. Rat. Mech. Anal., 8 (1961), 89-98. doi: 10.1007/BF00277432.

[12]

L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Siberian Math. J., 29 (1988), 427-441. doi: 10.1007/BF00969652.

[13]

Yu. G. Reshetnyak, Estimates for certain differential operators with finite-dimensional kernel, Siberian Math. J., 11 (1970), 315-326.

[14]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994. doi: 10.1515/9783110900095.

[15]

V. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002 (20 pp). doi: 10.1088/1361-6420/33/2/025002.

[16]

V. SharafutdinovM. Skokan and G. Uhlmann, Regularity of ghosts in tensor tomography, J. Geom. Anal., 15 (2005), 499-542. doi: 10.1007/BF02930983.

[17]

V. Sharafutdinov and J. Wang J, Tomography of small residual stresses, Inverse Problems, 28 (2012), 065017, 17 pp. doi: 10.1088/0266-5611/28/6/065017.

[18]

P. Stefanov, A sharp stability estimate in tensor tomography, in J. of Physics: Conference Series, 124 (2008), 012007. doi: 10.1088/1742-6596/124/1/012007.

[19]

M. E. Taylor, Partial Differential Equations I. Basic Theory, Texts in Applied Mathematics, 23. Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4684-9320-7.

[1]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[2]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[3]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[4]

Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems & Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147

[5]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1297-1309. doi: 10.3934/dcdss.2019089

[6]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[7]

Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems & Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257

[8]

Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems & Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69

[9]

Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems & Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431

[10]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[11]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[12]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[13]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[14]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[15]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[16]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[17]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[18]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[19]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems & Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[20]

Marc Deschamps, Olivier Poncelet. Complex ray in anisotropic solids: Exended Fermat's principle. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1623-1633. doi: 10.3934/dcdss.2019110

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (54)
  • HTML views (124)
  • Cited by (0)

Other articles
by authors

[Back to Top]