October 2018, 12(5): 1173-1198. doi: 10.3934/ipi.2018049

On finding a buried obstacle in a layered medium via the time domain enclosure method

1. 

Laboratory of Mathematics, Graduate School of Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan

2. 

Department of Mathematics, Graduate School of Sciences, Hiroshima University, Higashihiroshima 739-8526, Japan

Received  June 2017 Revised  February 2018 Published  July 2018

An inverse obstacle problem for the wave equation in a two layered medium is considered. It is assumed that the unknown obstacle is penetrable and embedded in the lower half-space. The wave as a solution of the wave equation is generated by an initial data whose support is in the upper half-space and observed at the same place as the support over a finite time interval. From the observed wave an indicator function in the time domain enclosure method is constructed. It is shown that, one can find some information about the geometry of the obstacle together with the qualitative property in the asymptotic behavior of the indicator function.

Citation: Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems & Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049
References:
[1]

J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, 1976.

[2]

E. J. Baranoski, Through-wall imaging: Historical perspective and future directions, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (2008). doi: 10.1109/ICASSP.2008.4518824.

[3]

L. M. Brekhovskikh, Waves in Layered Media, Translated from the Russian by D. Lieberman, Academic Press, New York, 1960.

[4]

D. J. DanielsD. J. Gunton and H. F. Scott, Introduction to subsurface radar, IEE Proceedings F Communications, Radar and Signal Processing, 135 (1988), 278-320. doi: 10.1049/ip-f-1.1988.0038.

[5]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Evolution problems Ⅰ, Vol. 5, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.

[6]

F. Delbary, K. Erhard, R. Kress, R. Potthast and J. Schulz, Inverse electromagnetic scattering in a two-layered medium with an application to mine detection, Invesre Problems, 24 (2008), 015002, 18pp. doi: 10.1088/0266-5611/24/1/015002.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-96750-4.

[8]

M. Ikehata, Size estimation of inclusion, J. Inv. Ill-Posed Problems, 6 (1998), 127-140. doi: 10.1515/jiip.1998.6.2.127.

[9]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case, Applicable Analysis, 86 (2007), 963-1005. doi: 10.1080/00036810701460834.

[10]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval, Inverse Problems, 26 (2010), 055010 (20pp). doi: 10.1088/0266-5611/26/5/055010.

[11]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: Ⅱ. Obstacles with a dissipative boundary or finite refractive index and back-scattering data, Inverse Problems, 28 (2012), 045010 (29pp). doi: 10.1088/0266-5611/28/4/045010.

[12]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain, Inverse Problems, 31 (2015), 085011(21pp). doi: 10.1088/0266-5611/31/8/085011.

[13]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, Chapter 6 in Inverse Problems and Computational Mechanics (eds. L. Marin, L. Munteanu, V. Chiroiu), Editura Academiei, Bucharest, Romania, 2 (2016), 123-147.

[14]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation, Inverse Problems, 25 (2009), 075005, 10pp. doi: 10.1088/0266-5611/25/7/075005.

[15]

M. Ikehata and M. Kawashita, An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method, Inverse Problems and Imaging, 8 (2014), 1073-1116. doi: 10.3934/ipi.2014.8.1073.

[16]

J. B. KellerR. M. Lewis and B. D. Seckler, Asymptotic solution of some diffraction problems, Commun. Pure Appl. Math., 9 (1956), 207-265. doi: 10.1002/cpa.3160090205.

[17]

J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006, 28pp. doi: 10.1088/0266-5611/31/10/105006.

[18]

X. Liu and B. Zhang, A uniqueness result for the inverse electromagnetic scattering problem in a two-layered medium, Inverse Problems, 26 (2010), 105007, 11pp. doi: 10.1088/0266-5611/26/10/105007.

show all references

References:
[1]

J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, 1976.

[2]

E. J. Baranoski, Through-wall imaging: Historical perspective and future directions, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (2008). doi: 10.1109/ICASSP.2008.4518824.

[3]

L. M. Brekhovskikh, Waves in Layered Media, Translated from the Russian by D. Lieberman, Academic Press, New York, 1960.

[4]

D. J. DanielsD. J. Gunton and H. F. Scott, Introduction to subsurface radar, IEE Proceedings F Communications, Radar and Signal Processing, 135 (1988), 278-320. doi: 10.1049/ip-f-1.1988.0038.

[5]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Evolution problems Ⅰ, Vol. 5, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.

[6]

F. Delbary, K. Erhard, R. Kress, R. Potthast and J. Schulz, Inverse electromagnetic scattering in a two-layered medium with an application to mine detection, Invesre Problems, 24 (2008), 015002, 18pp. doi: 10.1088/0266-5611/24/1/015002.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-96750-4.

[8]

M. Ikehata, Size estimation of inclusion, J. Inv. Ill-Posed Problems, 6 (1998), 127-140. doi: 10.1515/jiip.1998.6.2.127.

[9]

M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case, Applicable Analysis, 86 (2007), 963-1005. doi: 10.1080/00036810701460834.

[10]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval, Inverse Problems, 26 (2010), 055010 (20pp). doi: 10.1088/0266-5611/26/5/055010.

[11]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: Ⅱ. Obstacles with a dissipative boundary or finite refractive index and back-scattering data, Inverse Problems, 28 (2012), 045010 (29pp). doi: 10.1088/0266-5611/28/4/045010.

[12]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain, Inverse Problems, 31 (2015), 085011(21pp). doi: 10.1088/0266-5611/31/8/085011.

[13]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, Chapter 6 in Inverse Problems and Computational Mechanics (eds. L. Marin, L. Munteanu, V. Chiroiu), Editura Academiei, Bucharest, Romania, 2 (2016), 123-147.

[14]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation, Inverse Problems, 25 (2009), 075005, 10pp. doi: 10.1088/0266-5611/25/7/075005.

[15]

M. Ikehata and M. Kawashita, An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method, Inverse Problems and Imaging, 8 (2014), 1073-1116. doi: 10.3934/ipi.2014.8.1073.

[16]

J. B. KellerR. M. Lewis and B. D. Seckler, Asymptotic solution of some diffraction problems, Commun. Pure Appl. Math., 9 (1956), 207-265. doi: 10.1002/cpa.3160090205.

[17]

J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006, 28pp. doi: 10.1088/0266-5611/31/10/105006.

[18]

X. Liu and B. Zhang, A uniqueness result for the inverse electromagnetic scattering problem in a two-layered medium, Inverse Problems, 26 (2010), 105007, 11pp. doi: 10.1088/0266-5611/26/10/105007.

[1]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[2]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[3]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[4]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[5]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[6]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[7]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[8]

Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419

[9]

Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems & Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351

[10]

Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23

[11]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[12]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[13]

Ali Fuat Alkaya, Dindar Oz. An optimal algorithm for the obstacle neutralization problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 835-856. doi: 10.3934/jimo.2016049

[14]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[15]

Juan J. Manfredi, Julio D. Rossi, Stephanie J. Somersille. An obstacle problem for Tug-of-War games. Communications on Pure & Applied Analysis, 2015, 14 (1) : 217-228. doi: 10.3934/cpaa.2015.14.217

[16]

Takeshi Fukao, Masahiro Kubo. Time-dependent obstacle problem in thermohydraulics. Conference Publications, 2009, 2009 (Special) : 240-249. doi: 10.3934/proc.2009.2009.240

[17]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[18]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[19]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[20]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

2017 Impact Factor: 1.465

Article outline

[Back to Top]