August 2018, 12(4): 971-992. doi: 10.3934/ipi.2018041

Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

2. 

Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Received  August 2017 Published  June 2018

In this paper we revisit the transmission eigenvalue problem for an inhomogeneous media of compact support perturbed by small penetrable homogeneous inclusions. Assuming that the inhomogeneous background media is known and smooth, we investigate how these small volume inclusions affect the transmission eigenvalues. Our perturbation analysis makes use of the formulation of the transmission eigenvalue problem introduced Kirsch in [8], which requires that the contrast of the inhomogeneity is of one-sign only near the boundary. Thus, our approach can handle small perturbations with positive, negative or zero (voids) contrasts. In addition to proving the convergence rate for the eigenvalues corresponding to the perturbed media as inclusions' volume goes to zero, we also provide the explicit first correction term in the asymptotic expansion for simple eigenvalues. The correction term involves computable information about the known inhomogeneity as well as the location, size and refractive index of small perturbations. Our asymptotic formula has the potential to be used to recover information about small inclusions from knowledge of the real transmission eigenvalues, which can be determined from scattering data.

Citation: Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems & Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041
References:
[1]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003.

[2]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.

[3]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255. doi: 10.1137/090769338.

[4]

F. CakoniH. Harris and S. Moskow, The imaging of small perturbations in an anisotropic media, Computers and Mathematics with Applications, 74 (2017), 2769-2783. doi: 10.1016/j.camwa.2017.06.050.

[5]

F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp. doi: 10.1088/0266-5611/29/10/104014.

[6]

F. CakoniS. Moskow and S. Rome, The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions, Inverse Probl. Imaging, 9 (2015), 725-748. doi: 10.3934/ipi.2015.9.725.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138375.

[8]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, C. R. Math. Acad. Sci. Paris, 354 (2016), 377-382. doi: 10.1016/j.crma.2016.01.015.

[9]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp. doi: 10.1088/0266-5611/29/10/104011.

[10]

P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.

[11]

S. Moskow, Nonlinear eigenvalue approximation for compact operators, J. Math. Phys., 56 (2015), 113512, 11pp. doi: 10.1063/1.4936304.

[12]

J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725. doi: 10.1090/S0025-5718-1975-0383117-3.

[13]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectr. Theory, 7 (2017), 1-31. doi: 10.4171/JST/154.

[14]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.

[15]

L. Robbiano, Counting function for interior transmission eigenvalues, Math. Control Relat. Fields, 6 (2016), 167-183. doi: 10.3934/mcrf.2016.6.167.

[16]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354. doi: 10.1137/110836420.

show all references

References:
[1]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383. doi: 10.1016/j.crma.2010.02.003.

[2]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.

[3]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255. doi: 10.1137/090769338.

[4]

F. CakoniH. Harris and S. Moskow, The imaging of small perturbations in an anisotropic media, Computers and Mathematics with Applications, 74 (2017), 2769-2783. doi: 10.1016/j.camwa.2017.06.050.

[5]

F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp. doi: 10.1088/0266-5611/29/10/104014.

[6]

F. CakoniS. Moskow and S. Rome, The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions, Inverse Probl. Imaging, 9 (2015), 725-748. doi: 10.3934/ipi.2015.9.725.

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138375.

[8]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, C. R. Math. Acad. Sci. Paris, 354 (2016), 377-382. doi: 10.1016/j.crma.2016.01.015.

[9]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp. doi: 10.1088/0266-5611/29/10/104011.

[10]

P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.

[11]

S. Moskow, Nonlinear eigenvalue approximation for compact operators, J. Math. Phys., 56 (2015), 113512, 11pp. doi: 10.1063/1.4936304.

[12]

J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725. doi: 10.1090/S0025-5718-1975-0383117-3.

[13]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectr. Theory, 7 (2017), 1-31. doi: 10.4171/JST/154.

[14]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.

[15]

L. Robbiano, Counting function for interior transmission eigenvalues, Math. Control Relat. Fields, 6 (2016), 167-183. doi: 10.3934/mcrf.2016.6.167.

[16]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354. doi: 10.1137/110836420.

Figure 1.  Comparison of perturbed eigenvalues and corrected eigenvalues. The red circles are the perturbed transmission eigenvalues (squared) and the blue stars the corrected approximations for various values of $\epsilon$. The $x$-axis is $\log_{10}{\epsilon}$
Figure 2.  Log/log plot of the error $(\tau_\epsilon-(\tau_0+\epsilon \tau^{(1)} ))/\epsilon$
Table 1.  Parameters for Numerical Example
Domain $D$ $[-1, 1]$
Background Transmission Eigenvalue $k=\sqrt{-\tau}$7.12761
Background Coefficient $q_0$6.29
Perturbed Coefficient $q_1$24
Parameter $\lambda$50.72217
Domain $D$ $[-1, 1]$
Background Transmission Eigenvalue $k=\sqrt{-\tau}$7.12761
Background Coefficient $q_0$6.29
Perturbed Coefficient $q_1$24
Parameter $\lambda$50.72217
[1]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[2]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[3]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems & Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[4]

Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems & Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017

[5]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control & Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[6]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[7]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[8]

Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems & Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373

[9]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[10]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[11]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[12]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[13]

Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems & Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725

[14]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[15]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[16]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[17]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[18]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[19]

Massimo Lanza de Cristoforis, aolo Musolino. A quasi-linear heat transmission problem in a periodic two-phase dilute composite. A functional analytic approach. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2509-2542. doi: 10.3934/cpaa.2014.13.2509

[20]

Ha Pham, Plamen Stefanov. Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Problems & Imaging, 2014, 8 (3) : 795-810. doi: 10.3934/ipi.2014.8.795

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (46)
  • HTML views (88)
  • Cited by (0)

Other articles
by authors

[Back to Top]