• Previous Article
    Inverse acoustic scattering using high-order small-inclusion expansion of misfit function
  • IPI Home
  • This Issue
  • Next Article
    Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast
August 2018, 12(4): 955-970. doi: 10.3934/ipi.2018040

Inverse source problems without (pseudo) convexity assumptions

1. 

Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, KS 67260-0033, USA

2. 

School of Mathematical Sciences, and Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, Shanghai 200433, China

Corresponding author: Shuai Lu

Received  June 2017 Revised  January 2018 Published  June 2018

Fund Project: This research is supported in part by the Emylou Keith and Betty Dutcher Distinguished Professorship and the NSF grant DMS 15-14886. Shuai Lu is supported by NSFC No.11522108, 91630309, Shanghai Municipal Education Commission No.16SG01 and Special Funds for Major State Basic Research Projects of China (2015CB856003). The authors thank an anonymous referee for his careful reading of the manuscript and valuable remarks which greatly helped to improve the article

We study the inverse source problem for the Helmholtz equation from boundary Cauchy data with multiple wave numbers. The main goal of this paper is to study the uniqueness and increasing stability when the (pseudo)convexity or non-trapping conditions for the related hyperbolic problem are not satisfied. We consider general elliptic equations of the second order and arbitrary observation sites. To show the uniqueness we use the analytic continuation, the Fourier transform with respect to the wave numbers and uniqueness in the lateral Cauchy problem for hyperbolic equations. Numerical examples in 2 spatial dimension support the analysis and indicate the increasing stability for large intervals of the wave numbers, while analytic proofs of the increasing stability are not available.

Citation: Victor Isakov, Shuai Lu. Inverse source problems without (pseudo) convexity assumptions. Inverse Problems & Imaging, 2018, 12 (4) : 955-970. doi: 10.3934/ipi.2018040
References:
[1]

H. AmmariG. Bao and J. Fleming, Inverse source problem for Maxwell's equation in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382. doi: 10.1137/S0036139900373927.

[2]

C. A. Balanis, Antenna Theory-Analysis and Design, Wiley, Hoboken, NJ, 2005.

[3]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, Journal of Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013.

[4]

G. BaoJ. Lin and F. Triki, Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math., 548 (2011), 45-60. doi: 10.1090/conm/548/10835.

[5]

G. BaoS. LuW. Rundell and B. Xu, A recursive algorithm for multi-frequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628. doi: 10.1137/140993648.

[6]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030.

[7]

M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005 (20pp). doi: 10.1088/0266-5611/25/11/115005.

[8]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, Nonlinear Partial Differential Equations and Their Applications (D Cioranescu and J.-L. Lions, eds.), North-Holland, Elsevier Science, 31 (2002), 329-349. doi: 10.1016/S0168-2024(02)80016-9.

[9]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., 426 (2007), 255-267. doi: 10.1090/conm/426/08192.

[10]

V. Isakov, On increasing stability in the Cauchy Problem for general elliptic equations, New Prospects in Direct, Inverse, and Control Problems for Evolution Equations Ch. 10. Springer INdAM Series. (A. Favini et al., ed.), North-Holland, Elsevier Science, Springer-Verlag, 2014.

[11]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5.

[12]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. Anal., 18 (2011), 1-29. doi: 10.4310/MAA.2011.v18.n1.a1.

[13]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map, Inverse Problems and Imaging, 8 (2014), 1139-1150. doi: 10.3934/ipi.2014.8.1139.

[14]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594. doi: 10.1137/15M1019052.

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problem with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18. doi: 10.1137/17M1112704.

[16]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585. doi: 10.1002/cpa.3160130402.

[17]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin-Heidelberg, 1972.

[18]

T. Kato, Perturbation Theory for Linear Operators, Band 132 Springer-Verlag New York, Inc., New York, 1966.

[19]

D. Tataru, Unique continuation for solutions to PDE's: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884. doi: 10.1080/03605309508821117.

[20]

G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922.

show all references

References:
[1]

H. AmmariG. Bao and J. Fleming, Inverse source problem for Maxwell's equation in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382. doi: 10.1137/S0036139900373927.

[2]

C. A. Balanis, Antenna Theory-Analysis and Design, Wiley, Hoboken, NJ, 2005.

[3]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, Journal of Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013.

[4]

G. BaoJ. Lin and F. Triki, Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math., 548 (2011), 45-60. doi: 10.1090/conm/548/10835.

[5]

G. BaoS. LuW. Rundell and B. Xu, A recursive algorithm for multi-frequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628. doi: 10.1137/140993648.

[6]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030.

[7]

M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005 (20pp). doi: 10.1088/0266-5611/25/11/115005.

[8]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, Nonlinear Partial Differential Equations and Their Applications (D Cioranescu and J.-L. Lions, eds.), North-Holland, Elsevier Science, 31 (2002), 329-349. doi: 10.1016/S0168-2024(02)80016-9.

[9]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., 426 (2007), 255-267. doi: 10.1090/conm/426/08192.

[10]

V. Isakov, On increasing stability in the Cauchy Problem for general elliptic equations, New Prospects in Direct, Inverse, and Control Problems for Evolution Equations Ch. 10. Springer INdAM Series. (A. Favini et al., ed.), North-Holland, Elsevier Science, Springer-Verlag, 2014.

[11]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5.

[12]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. Anal., 18 (2011), 1-29. doi: 10.4310/MAA.2011.v18.n1.a1.

[13]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map, Inverse Problems and Imaging, 8 (2014), 1139-1150. doi: 10.3934/ipi.2014.8.1139.

[14]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594. doi: 10.1137/15M1019052.

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problem with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18. doi: 10.1137/17M1112704.

[16]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585. doi: 10.1002/cpa.3160130402.

[17]

J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin-Heidelberg, 1972.

[18]

T. Kato, Perturbation Theory for Linear Operators, Band 132 Springer-Verlag New York, Inc., New York, 1966.

[19]

D. Tataru, Unique continuation for solutions to PDE's: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884. doi: 10.1080/03605309508821117.

[20]

G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922.

Figure 1.  Domain of the source problem. The source function is compactly supported in $\Omega\setminus\Omega_0$
Figure 2.  Annular domain of the interior inverse source problem. Solid red line is the observation $\Gamma$ and the domain $\Omega$ is $B_{2}(0.3, 0.3)\setminus \bar B_{0.5}(0, 0)$
Figure 3.  Annular domain with a piecewise constant source function for exact measurement data. Left: the approximate source; Middle: the error between both sources; Right: relative error versus the wavenumber $k$ with the minimal relative error $0.1856$ at $k = 200$
Figure 4.  Annular domain with a mixed-point source function for exact measurement data. Left: the approximate source; Middle: the error between both sources; Right: relative error versus the wave number $k$ with the minimal relative error $0.1795$ at $k = 200$
Figure 5.  Annular domain with different observation sites for exact measurement data. $\Gamma = (0.3+2\cos\theta, 0.3+2\sin\theta)$, $\theta\in (0, \pi)$; $\Gamma_1 = (0.3+5\cos\theta, 0.3+5\sin\theta)$, $\theta\in(0, \frac{2}{5}\pi)$ and $\Gamma_2 = (0.3+10\cos\theta, 0.3+10\sin\theta)$, $\theta\in (0, \frac{1}{5}\pi)$. Left: the relative error slope versus the increasing wave number for the piecewise constant source; Right: the relative error slope versus the increasing wave number for the mixed-point source. The values at the tail of each line are the minimal relative errors with $k = 200$ or $k = 400$
Figure 6.  Rectangular domain of the interior inverse source problem. Solid red line is the observation site $\Gamma = \{0.45\}\times [-0.45, 0.45]$ and the blue shadowed domain $(0.5, 2.5)\times (-1, 1)$ is the source domain which is a subset of $\Omega$
Figure 7.  Rectangular domain with piecewise constant sources for exact measurement data. Left: the approximate source; Middle: the error between both sources; Right: relative error versus the wave number $k$ with the minimal relative error $0.3149$ at $k = 200$
Figure 8.  Error slopes for fixed observation site $\Gamma$ but different recovery domains. The values at the tail of each line are the minimal relative errors with $k = 200$ or $k = 400$
Figure 9.  Annular domain of the exterior inverse source problem. Solid red line is the observation site $\Gamma$ and shadowed domain is $\Omega$
Figure 10.  Annular domain with a piecewise constant source function for exact measurement data. Left: the approximate source; Middle: the error between both sources; Right: relative error versus the wave number $k$ with the minimal relative error $0.3923$ at $k = 200$
Figure 11.  Rectangular domain of the exterior inverse source problem. Solid red line is the observation site $\Gamma$ and shadowed domain is $\Omega$
Figure 12.  Rectangular domain with piecewise constant sources for exact measurement data. Left: the approximate source; Middle: the error between both sources; Right: relative error versus the wave number $k$ with the minimal relative error $0.1747$ at $k = 200$
[1]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[2]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[3]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[4]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[5]

Xiaoliang Cheng, Rongfang Gong, Weimin Han. A new Kohn-Vogelius type formulation for inverse source problems. Inverse Problems & Imaging, 2015, 9 (4) : 1051-1067. doi: 10.3934/ipi.2015.9.1051

[6]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[7]

Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641

[8]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[9]

Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79

[10]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[11]

Kazuhiro Ishige, Paolo Salani. On a new kind of convexity for solutions of parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 851-864. doi: 10.3934/dcdss.2011.4.851

[12]

Hisashi Morioka. Inverse boundary value problems for discrete Schrödinger operators on the multi-dimensional square lattice. Inverse Problems & Imaging, 2011, 5 (3) : 715-730. doi: 10.3934/ipi.2011.5.715

[13]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems & Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[14]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[15]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[16]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[17]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[18]

Xiaoli Zhu, Fuyi Li, Ting Rong. Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2465-2485. doi: 10.3934/cpaa.2015.14.2465

[19]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[20]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (61)
  • HTML views (67)
  • Cited by (0)

Other articles
by authors

[Back to Top]