August 2018, 12(4): 921-953. doi: 10.3934/ipi.2018039

Inverse acoustic scattering using high-order small-inclusion expansion of misfit function

POEMS (ENSTA ParisTech, CNRS, INRIA, Université Paris-Saclay), 91120 Palaiseau, France

Received  May 2017 Revised  March 2018 Published  June 2018

This article concerns an extension of the topological derivative concept for 3D inverse acoustic scattering problems involving the identification of penetrable obstacles, whereby the featured data-misfit cost function $\mathbb{J}$ is expanded in powers of the characteristic radius $a$ of a single small inhomogeneity. The $O(a^6)$ approximation $\mathbb{J}_6$ of $\mathbb{J}$ is derived and justified for a single obstacle of given location, shape and material properties embedded in a 3D acoustic medium of arbitrary shape. The generalization of $\mathbb{J}_6$ to multiple small obstacles is outlined. Simpler and more explicit expressions of $\mathbb{J}_6$ are obtained when the scatterer is centrally-symmetric or spherical. An approximate and computationally light global search procedure, where the location and size of the unknown object are estimated by minimizing $\mathbb{J}_6$ over a search grid, is proposed and demonstrated on numerical experiments, where the identification from known acoustic pressure on the surface of a penetrable scatterer embedded in a acoustic semi-infinite medium, and whose shape may differ from that of the trial obstacle assumed in the expansion of $\mathbb{J}$, is considered.

Citation: Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039
References:
[1]

H. AmmariE. Iakovleva and S. Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal., 34 (2003), 882-890. doi: 10.1137/S0036141001392785.

[2]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics 1846. Springer-Verlag, 2004. doi: 10.1007/b98245.

[3]

H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162. Springer-Verlag, 2007.

[4]

H. Ammari and A. Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, J. Maths Pures Appl., 82 (2003), 749-842. doi: 10.1016/S0021-7824(03)00033-3.

[5]

H. AmmariJ. GarnierV. Jugnon and H. Kang, Stability and resolution analysis for a topological derivative based imaging functional, SIAM J. Contr. Opt., 50 (2012), 48-76. doi: 10.1137/100812501.

[6]

C. Bellis and M. Bonnet, A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data, Int. J. Solids Struct., 47 (2010), 1221-1242.

[7]

C. Bellis, M. Bonnet and F. Cakoni, Acoustic inverse scattering using topological derivative of far-field measurements-based $L^2$ cost functionals, Inverse Probl., 29 (2013), 075012, 30pp. doi: 10.1088/0266-5611/29/7/075012.

[8]

A. BendaliP. H. Cocquet and S. Tordeux, Approximation by multipoles of the multiple acoustic scattering by small obstacles in three dimensions and application to the Foldy theory of isotropic scattering, Arch. Ration. Mech. An., 219 (2016), 1017-1059. doi: 10.1007/s00205-015-0915-5.

[9]

M. Bonnet, Inverse acoustic scattering by small-obstacle expansion of misfit function, Inverse Probl., 24 (2008), 035022, 27pp. doi: 10.1088/0266-5611/24/3/035022.

[10]

M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems, Eng. Anal. Bound. Elem., 35 (2011), 223-235. doi: 10.1016/j.enganabound.2010.08.007.

[11]

M. Bonnet, A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. Unconditional solvability by Neumann series, J. Integral Eq. Appl., 29 (2017), 271-295. doi: 10.1216/JIE-2017-29-2-271.

[12]

M. Bonnet and R. Cornaggia, Higher order topological derivatives for three-dimensional anisotropic elasticity, ESAIM: Math. Modell. Numer. Anal., 51 (2017), 2069-2092. doi: 10.1051/m2an/2017015.

[13]

M. Bonnet and B. B. Guzina, Sounding of finite solid bodies by way of topological derivative, Int. J. Num. Meth. Eng., 61 (2004), 2344-2373. doi: 10.1002/nme.1153.

[14]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.

[15]

D.J. Cedio-FengyaS. Moskow and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Probl., 14 (1998), 553-595. doi: 10.1088/0266-5611/14/3/011.

[16]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.

[17]

G. R. Feijóo, A new method in inverse scattering based on the topological derivative, Inverse Probl., 20 (2004), 1819-1840. doi: 10.1088/0266-5611/20/6/008.

[18]

A. D. Ferreira and A. A. Novotny, A new non-iterative reconstruction method for the electrical impedance tomography problem, Inverse Probl., 33 (2017), 035005, 27pp. doi: 10.1088/1361-6420/aa54e4.

[19]

N. A. Gumerov and R. Duraiswami, Fast multipole methods for the Helmholtz equation in three dimensions, J. Comput. Phys., 215 (2006), 363-383. doi: 10.1016/j.jcp.2005.10.029.

[20]

B. B. Guzina and M. Bonnet, Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics, Inverse Probl., 22 (2006), 1761-1785. doi: 10.1088/0266-5611/22/5/014.

[21]

B. B. Guzina and I. Chikichev, From imaging to material identification: A generalized concept of topological sensitivity, J. Mech. Phys. Solids, 55 (2007), 245-279. doi: 10.1016/j.jmps.2006.07.009.

[22]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, 2008.

[23]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.

[24]

A. Laurain, M. Hintermüller, M. Freiberger and H. Scharfetter, Topological sensitivity analysis in fluorescence optical tomography Inverse Probl., 29 (2013), 025003, 30pp. doi: 10.1088/0266-5611/29/2/025003.

[25]

P. A. Martin, Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., 64 (2003), 297-308. doi: 10.1137/S0036139902414379.

[26]

M. MasmoudiJ. Pommier and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications, Inverse Probl., 21 (2005), 547-564. doi: 10.1088/0266-5611/21/2/008.

[27]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge, 2000.

[28]

T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, 1987.

[29]

R. Potthast, A survey on sampling and probe methods for inverse problems, Inverse Probl., 22 (2006), R1-R47. doi: 10.1088/0266-5611/22/2/R01.

[30]

B. SametS. Amstutz and M. Masmoudi, The topological asymptotic for the Helmholtz equation, SIAM J. Control Optim., 42 (2004), 1523-1544. doi: 10.1137/S0363012902406801.

[31]

M. SilvaM. Matalon and D. A. Tortorelli, Higher order topological derivatives in elasticity, Int. J. Solids Struct., 47 (2010), 3053-3066.

show all references

References:
[1]

H. AmmariE. Iakovleva and S. Moskow, Recovery of small inhomogeneities from the scattering amplitude at a fixed frequency, SIAM J. Math. Anal., 34 (2003), 882-890. doi: 10.1137/S0036141001392785.

[2]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics 1846. Springer-Verlag, 2004. doi: 10.1007/b98245.

[3]

H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Vol. 162. Springer-Verlag, 2007.

[4]

H. Ammari and A. Khelifi, Electromagnetic scattering by small dielectric inhomogeneities, J. Maths Pures Appl., 82 (2003), 749-842. doi: 10.1016/S0021-7824(03)00033-3.

[5]

H. AmmariJ. GarnierV. Jugnon and H. Kang, Stability and resolution analysis for a topological derivative based imaging functional, SIAM J. Contr. Opt., 50 (2012), 48-76. doi: 10.1137/100812501.

[6]

C. Bellis and M. Bonnet, A FEM-based topological sensitivity approach for fast qualitative identification of buried cavities from elastodynamic overdetermined boundary data, Int. J. Solids Struct., 47 (2010), 1221-1242.

[7]

C. Bellis, M. Bonnet and F. Cakoni, Acoustic inverse scattering using topological derivative of far-field measurements-based $L^2$ cost functionals, Inverse Probl., 29 (2013), 075012, 30pp. doi: 10.1088/0266-5611/29/7/075012.

[8]

A. BendaliP. H. Cocquet and S. Tordeux, Approximation by multipoles of the multiple acoustic scattering by small obstacles in three dimensions and application to the Foldy theory of isotropic scattering, Arch. Ration. Mech. An., 219 (2016), 1017-1059. doi: 10.1007/s00205-015-0915-5.

[9]

M. Bonnet, Inverse acoustic scattering by small-obstacle expansion of misfit function, Inverse Probl., 24 (2008), 035022, 27pp. doi: 10.1088/0266-5611/24/3/035022.

[10]

M. Bonnet, Fast identification of cracks using higher-order topological sensitivity for 2-D potential problems, Eng. Anal. Bound. Elem., 35 (2011), 223-235. doi: 10.1016/j.enganabound.2010.08.007.

[11]

M. Bonnet, A modified volume integral equation for anisotropic elastic or conducting inhomogeneities. Unconditional solvability by Neumann series, J. Integral Eq. Appl., 29 (2017), 271-295. doi: 10.1216/JIE-2017-29-2-271.

[12]

M. Bonnet and R. Cornaggia, Higher order topological derivatives for three-dimensional anisotropic elasticity, ESAIM: Math. Modell. Numer. Anal., 51 (2017), 2069-2092. doi: 10.1051/m2an/2017015.

[13]

M. Bonnet and B. B. Guzina, Sounding of finite solid bodies by way of topological derivative, Int. J. Num. Meth. Eng., 61 (2004), 2344-2373. doi: 10.1002/nme.1153.

[14]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.

[15]

D.J. Cedio-FengyaS. Moskow and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Probl., 14 (1998), 553-595. doi: 10.1088/0266-5611/14/3/011.

[16]

P. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2013.

[17]

G. R. Feijóo, A new method in inverse scattering based on the topological derivative, Inverse Probl., 20 (2004), 1819-1840. doi: 10.1088/0266-5611/20/6/008.

[18]

A. D. Ferreira and A. A. Novotny, A new non-iterative reconstruction method for the electrical impedance tomography problem, Inverse Probl., 33 (2017), 035005, 27pp. doi: 10.1088/1361-6420/aa54e4.

[19]

N. A. Gumerov and R. Duraiswami, Fast multipole methods for the Helmholtz equation in three dimensions, J. Comput. Phys., 215 (2006), 363-383. doi: 10.1016/j.jcp.2005.10.029.

[20]

B. B. Guzina and M. Bonnet, Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics, Inverse Probl., 22 (2006), 1761-1785. doi: 10.1088/0266-5611/22/5/014.

[21]

B. B. Guzina and I. Chikichev, From imaging to material identification: A generalized concept of topological sensitivity, J. Mech. Phys. Solids, 55 (2007), 245-279. doi: 10.1016/j.jmps.2006.07.009.

[22]

G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer, 2008.

[23]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.

[24]

A. Laurain, M. Hintermüller, M. Freiberger and H. Scharfetter, Topological sensitivity analysis in fluorescence optical tomography Inverse Probl., 29 (2013), 025003, 30pp. doi: 10.1088/0266-5611/29/2/025003.

[25]

P. A. Martin, Acoustic scattering by inhomogeneous obstacles, SIAM J. Appl. Math., 64 (2003), 297-308. doi: 10.1137/S0036139902414379.

[26]

M. MasmoudiJ. Pommier and B. Samet, The topological asymptotic expansion for the Maxwell equations and some applications, Inverse Probl., 21 (2005), 547-564. doi: 10.1088/0266-5611/21/2/008.

[27]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge, 2000.

[28]

T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff, 1987.

[29]

R. Potthast, A survey on sampling and probe methods for inverse problems, Inverse Probl., 22 (2006), R1-R47. doi: 10.1088/0266-5611/22/2/R01.

[30]

B. SametS. Amstutz and M. Masmoudi, The topological asymptotic for the Helmholtz equation, SIAM J. Control Optim., 42 (2004), 1523-1544. doi: 10.1137/S0363012902406801.

[31]

M. SilvaM. Matalon and D. A. Tortorelli, Higher order topological derivatives in elasticity, Int. J. Solids Struct., 47 (2010), 3053-3066.

Figure 1.  Identification of a penetrable scatterer $(\mathring{B}, \mathring{\rho}, \mathring{c})$ in a acoustic half-space: geometry and notation (the dark shaded part is the search region $\mathcal{S}$)
Figure 2.  Iso-surfaces of $\hat{J}_{6}(\mathit{\boldsymbol{z}})$ for $\hat{J}_{6}=\zeta J_{6}^{\text{min}}$, with $\zeta=0.6$ (top left), $\zeta=0.7$ (top right), $\zeta=0.8$ (bottom left) and $\zeta=0.9$ (bottom right): obstacle (E), testing configuration $5\times5$ and noise-free data. The iso-surfaces and true obstacle location are emphasized by projections on coordinate planes
Figure 3.  Contour plots of $\mathit{\boldsymbol{z}}\mapsto{\mathcal{T}}_3(\mathit{\boldsymbol{z}})$ (left column) and $\mathit{\boldsymbol{z}}\mapsto\hat{J}_{6}(\mathit{\boldsymbol{z}})$ (right column) in the horizontal plane containing the true obstacle center $\hat {\mathit{\boldsymbol{x}}}$, for obstacle (B), testing configuration $5\times5$ and noise-free data. Testing frequencies are $kd=1$ (top row), $kd=2$ (middle row) and $kd=5$ (bottom row)
Figure 4.  Contour plots of $\mathit{\boldsymbol{z}}\mapsto{\mathcal{T}}_3(\mathit{\boldsymbol{z}})$ (left column) and $\mathit{\boldsymbol{z}}\mapsto\hat{J}_{6}(\mathit{\boldsymbol{z}})$ (right column) in a vertical plane containing the true obstacle center $\hat {\mathit{\boldsymbol{x}}}$, for obstacle (B), testing configuration $5\times5$ and noise-free data. Testing frequencies are $kd=1$ (top row), $kd=2$ (middle row) and $kd=5$ (bottom row)
Figure 5.  Sensitivity of search procedure to trial physical parameters: contour map of $(\beta, \eta)\mapsto \hat{J}_6(\hat {\mathit{\boldsymbol{x}}};\beta, \eta)$ (actual obstacle parameters are $\hat{\beta}=1, \, \hat{\eta}=-0.5$)
Table 1.  Relative error $R(\hat {\mathit{\boldsymbol{x}}})/\hat{R}\, -1$ on obstacle radius, for obstacles (S), (E) and (B) of known location, testing configurations $2\times2$, $5\times5$ and $10\times10$, and noise-free synthetic data.
$kd=1$ $ kd=2$ $ kd=5$
(S) $ 2\times 2$ $-1.1$e$-02$ $-4.7$e$-02$ $-2.1$e$-01$
$ 5\times 5$$-1.1$e$-02$$-4.9$e$-02$$-2.2$e$-01$
$10\times10$$-1.1$e$-02$$-5.0$e$-02$$-2.3$e$-01$
(E) $ 2\times 2$$-1.8$e$-03$$-3.7$e$-02$$-2.1$e$-01$
$ 5\times 5$$-5.0$e$-03$$-4.1$e$-02$$-2.2$e$-01$
$10\times10$$-5.8$e$-03$$-4.2$e$-02$$-2.2$e$-01$
(B) $ 2\times 2$$-4.4$e$-03$$-4.0$e$-02$$-2.1$e$-01$
$ 5\times 5$$-8.2$e$-03$$-4.4$e$-02$$-2.2$e$-01$
$10\times10$$-9.2$e$-03$$-4.5$e$-02$$-2.3$e$-01$
$kd=1$ $ kd=2$ $ kd=5$
(S) $ 2\times 2$ $-1.1$e$-02$ $-4.7$e$-02$ $-2.1$e$-01$
$ 5\times 5$$-1.1$e$-02$$-4.9$e$-02$$-2.2$e$-01$
$10\times10$$-1.1$e$-02$$-5.0$e$-02$$-2.3$e$-01$
(E) $ 2\times 2$$-1.8$e$-03$$-3.7$e$-02$$-2.1$e$-01$
$ 5\times 5$$-5.0$e$-03$$-4.1$e$-02$$-2.2$e$-01$
$10\times10$$-5.8$e$-03$$-4.2$e$-02$$-2.2$e$-01$
(B) $ 2\times 2$$-4.4$e$-03$$-4.0$e$-02$$-2.1$e$-01$
$ 5\times 5$$-8.2$e$-03$$-4.4$e$-02$$-2.2$e$-01$
$10\times10$$-9.2$e$-03$$-4.5$e$-02$$-2.3$e$-01$
Table 2.  Relative error $R(\hat {\mathit{\boldsymbol{x}}})/\hat{R}\, -1$ on obstacle radius for obstacles (S), (E) and (B) of unknown location: testing configurations $5\times5$, $10\times10$ and $20\times20$, noise-free synthetic data. A distance $|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|= d\sqrt{5}/20$ is found for all cases.
$kd=1$$ kd=2$$ kd=5$
(S) $ 2\times 2$$-1.9$e$-02$$-5.6$e$-02$$-2.3$e$-01$
$ 5\times 5$$-2.1$e$-02$$-6.0$e$-02$$-2.4$e$-01$
$10\times10$$-2.2$e$-02$$-6.2$e$-02$$-2.5$e$-01$
(E)$ 2\times 2$$-4.7$e$-03$$-4.6$e$-02$$-2.3$e$-01$
$ 5\times 5$$-3.5$e$-03$$-5.2$e$-02$$-2.4$e$-01$
$10\times10$$-3.4$e$-03$$-3.5$e$-02$$-2.4$e$-01$
(B)$ 2\times 2$$-2.2$e$-03$$-3.5$e$-02$$-2.1$e$-01$
$ 5\times 5$$-1.2$e$-03$$-3.7$e$-02$$-2.2$e$-01$
$10\times10$$-1.1$e$-03$$-3.9$e$-02$$-2.2$e$-01$
$kd=1$$ kd=2$$ kd=5$
(S) $ 2\times 2$$-1.9$e$-02$$-5.6$e$-02$$-2.3$e$-01$
$ 5\times 5$$-2.1$e$-02$$-6.0$e$-02$$-2.4$e$-01$
$10\times10$$-2.2$e$-02$$-6.2$e$-02$$-2.5$e$-01$
(E)$ 2\times 2$$-4.7$e$-03$$-4.6$e$-02$$-2.3$e$-01$
$ 5\times 5$$-3.5$e$-03$$-5.2$e$-02$$-2.4$e$-01$
$10\times10$$-3.4$e$-03$$-3.5$e$-02$$-2.4$e$-01$
(B)$ 2\times 2$$-2.2$e$-03$$-3.5$e$-02$$-2.1$e$-01$
$ 5\times 5$$-1.2$e$-03$$-3.7$e$-02$$-2.2$e$-01$
$10\times10$$-1.1$e$-03$$-3.9$e$-02$$-2.2$e$-01$
Table 3.  Offset $|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$ and relative error $\varepsilon_R : = R_{\rm{est}}/\hat{R}\, -1$ on obstacle radius for obstacles (S), (E) and (B): testing configurations $2\times2$, $5\times5$ and $10\times10$, synthetic data with 2% relative noise on total field. Where $|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$ is unacceptably large, $\varepsilon_R$ is deemed irrelevant and not shown.
$ka=1$$ka=2$ m$ka=5$
$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$
(S) $ 2\times 2$$6.5$e$+00$——$4.9$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
$ 5\times 5$$4.3$e$+00$——$ -8.3$e$-02$$5.6$e$-01$$1.1$e$-01$$ -2.3$e$-01$
$10\times10$$4.2$e$+00$——$ -5.2$e$-03$$1.1$e$-01$$1.1$e$-01$$ -2.4$e$-01$
(E) $ 2\times 2$$5.4$e$+00$——$6.0$e$+00$——$1.1$e$-01$$ -1.8$e$-01$
$ 5\times 5$$4.2$e$+00$——$1.1$e$-01$$ -3.5$e$-02$$1.1$e$-01$$ -2.4$e$-01$
$10\times10$$4.8$e$+00$——$2.3$e$-01$$ -6.7$e$-02$$1.1$e$-01$$ -2.5$e$-01$
(B)$ 2\times 2$$2.8$e$+00$——$6.7$e$+00$——$1.1$e$-01$$ -1.8$e$-01$
$ 5\times 5$$4.4$e$+00$——$3.1$e$-01$$ -4.2$e$-02$$1.1$e$-01$$ -2.2$e$-01$
$10\times10$$2.4$e$+00$——$2.3$e$-01$$ -3.7$e$-02$$1.1$e$-01$$ -2.3$e$-01$
$ka=1$$ka=2$ m$ka=5$
$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$
(S) $ 2\times 2$$6.5$e$+00$——$4.9$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
$ 5\times 5$$4.3$e$+00$——$ -8.3$e$-02$$5.6$e$-01$$1.1$e$-01$$ -2.3$e$-01$
$10\times10$$4.2$e$+00$——$ -5.2$e$-03$$1.1$e$-01$$1.1$e$-01$$ -2.4$e$-01$
(E) $ 2\times 2$$5.4$e$+00$——$6.0$e$+00$——$1.1$e$-01$$ -1.8$e$-01$
$ 5\times 5$$4.2$e$+00$——$1.1$e$-01$$ -3.5$e$-02$$1.1$e$-01$$ -2.4$e$-01$
$10\times10$$4.8$e$+00$——$2.3$e$-01$$ -6.7$e$-02$$1.1$e$-01$$ -2.5$e$-01$
(B)$ 2\times 2$$2.8$e$+00$——$6.7$e$+00$——$1.1$e$-01$$ -1.8$e$-01$
$ 5\times 5$$4.4$e$+00$——$3.1$e$-01$$ -4.2$e$-02$$1.1$e$-01$$ -2.2$e$-01$
$10\times10$$2.4$e$+00$——$2.3$e$-01$$ -3.7$e$-02$$1.1$e$-01$$ -2.3$e$-01$
Table 4.  Offset $|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$ and relative error $\varepsilon_R : = R_{\rm{est}}/\hat{R}\, -1$ on obstacle radius for obstacles (S), (E) and (B): testing configurations $2\times2$, $5\times5$ and $10\times10$, synthetic data with 5% relative noise on total field. Where $\varepsilon_R$ is unacceptably large, $R_{\rm{est}}/\hat{R}\;-1$ is deemed irrelevant and not shown.
$ka=1$$ka=2$$ka=5$
$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$
(S)$ 2\times 2$$3.5$e$+00$——$6.9$e$+00$——$3.9$e$+00$$ -2.4$e$-01$
$ 5\times 5$$3.7$e$+00$——$7.2$e$+00$——$1.1$e$-01$$ -2.3$e$-01$
$10\times10$$5.6$e$+00$——$8.5$e$+00$——$1.1$e$-01$
(E)$ 2\times 2$$5.1$e$+00$——$5.0$e$+00$——$4.2$e$+00$——
$ 5\times 5$$6.4$e$+00$——$3.7$e$+00$——$1.1$e$-01$$ -1.9$e$-01$
$10\times10$$4.9$e$+00$——$5.4$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
(B)$ 2\times 2$$5.9$e$+00$——$3.8$e$+00$——$6.1$e$+00$——
$ 5\times 5$$4.8$e$+00$——$5.1$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
$10\times10$$3.8$e$+00$——$6.0$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
$ka=1$$ka=2$$ka=5$
$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$
(S)$ 2\times 2$$3.5$e$+00$——$6.9$e$+00$——$3.9$e$+00$$ -2.4$e$-01$
$ 5\times 5$$3.7$e$+00$——$7.2$e$+00$——$1.1$e$-01$$ -2.3$e$-01$
$10\times10$$5.6$e$+00$——$8.5$e$+00$——$1.1$e$-01$
(E)$ 2\times 2$$5.1$e$+00$——$5.0$e$+00$——$4.2$e$+00$——
$ 5\times 5$$6.4$e$+00$——$3.7$e$+00$——$1.1$e$-01$$ -1.9$e$-01$
$10\times10$$4.9$e$+00$——$5.4$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
(B)$ 2\times 2$$5.9$e$+00$——$3.8$e$+00$——$6.1$e$+00$——
$ 5\times 5$$4.8$e$+00$——$5.1$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
$10\times10$$3.8$e$+00$——$6.0$e$+00$——$1.1$e$-01$$ -2.1$e$-01$
Table 5.  Offset $|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$ and relative error $\varepsilon_R : = R_{\rm{est}}/\hat{R}\, -1$ for obstacle (S) of unknown location: testing configurations $2\times2$, $5\times5$ and $10\times10$, synthetic data with 20% relative noise on scattered field.
$ka=1$$ka=2$$ka=5$
$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$
$ 2\times 2$$1.1$e$-01$$6.7$e$-03$$1.1$e$-01$$ -5.3$e$-02$$1.1$e$-01$$ -2.3$e$-01$
$ 5\times 5$$1.1$e$-01$$ -2.1$e$-02$$1.1$e$-01$$ -6.6$e$-02$$1.1$e$-01$$ -2.4$e$-01$
$10\times10$$1.1$e$-01$$ -2.1$e$-02$$1.1$e$-01$$ -6.3$e$-02$$1.1$e$-01$$ -2.5$e$-01$
$ka=1$$ka=2$$ka=5$
$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$$|{\mathit{\boldsymbol{x}}}_{\rm{est}}-\hat {\mathit{\boldsymbol{x}}}|$$\varepsilon_R$
$ 2\times 2$$1.1$e$-01$$6.7$e$-03$$1.1$e$-01$$ -5.3$e$-02$$1.1$e$-01$$ -2.3$e$-01$
$ 5\times 5$$1.1$e$-01$$ -2.1$e$-02$$1.1$e$-01$$ -6.6$e$-02$$1.1$e$-01$$ -2.4$e$-01$
$10\times10$$1.1$e$-01$$ -2.1$e$-02$$1.1$e$-01$$ -6.3$e$-02$$1.1$e$-01$$ -2.5$e$-01$
[1]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[2]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[3]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[4]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[5]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[6]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[7]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[8]

Yan Guo, Juhi Jang, Ning Jiang. Local Hilbert expansion for the Boltzmann equation. Kinetic & Related Models, 2009, 2 (1) : 205-214. doi: 10.3934/krm.2009.2.205

[9]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[10]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[11]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[12]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

[13]

Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347

[14]

Chunqing Lu. Asymptotic solutions of a nonlinear equation. Conference Publications, 2003, 2003 (Special) : 590-595. doi: 10.3934/proc.2003.2003.590

[15]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[16]

Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058

[17]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[18]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[19]

Andrea Malchiodi. Topological methods for an elliptic equation with exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 277-294. doi: 10.3934/dcds.2008.21.277

[20]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (41)
  • HTML views (102)
  • Cited by (0)

Other articles
by authors

[Back to Top]