June 2018, 12(3): 667-676. doi: 10.3934/ipi.2018028

EIT in a layered anisotropic medium

1. 

Dipartimento di Matematica e Geoscienze, Università di Trieste, Via Valerio 12/1 -34127, Trieste, Italy

2. 

Departments of Computational and Applied Mathematics, Earth Science, Rice University, Houston, Texas, USA

3. 

Department of Mathematics and Statistics, Health Research Institute (HRI), University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland

Received  August 2017 Revised  December 2017 Published  March 2018

We consider the inverse problem in geophysics of imaging the subsurface of the Earth in cases where a region below the surface is known to be formed by strata of different materials and the depths and thicknesses of the strata and the (possibly anisotropic) conductivity of each of them need to be identified simultaneously. This problem is treated as a special case of the inverse problem of determining a family of nested inclusions in a medium $Ω\subset\mathbb{R}^n$, $n ≥ 3$.

Citation: Giovanni Alessandrini, Maarten V. de Hoop, Romina Gaburro, Eva Sincich. EIT in a layered anisotropic medium. Inverse Problems & Imaging, 2018, 12 (3) : 667-676. doi: 10.3934/ipi.2018028
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), 140, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003.

[2]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Differential Equations, 84 (1990), 252-272. doi: 10.1016/0022-0396(90)90078-4.

[3]

G. AlessandriniM. V. de Hoop and R. Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Problems, 33 (2017), 125013.

[4]

G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171. doi: 10.1137/S0036141000369563.

[5]

G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936. doi: 10.1080/03605300903017397.

[6]

K. AstalaM. Lassas and L. Päivärinta, Calderón inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224. doi: 10.1081/PDE-200044485.

[7]

M. I. Belishev, The Calderón problem for two-dimensional manifolds by the BC-Method, SIAM J. Math. Anal., 35 (2003), 172-182. doi: 10.1137/S0036141002413919.

[8]

E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42.

[9]

A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. Reprinted in: Comput. Appl. Math., 25 (2006), 133–138.

[10]

C. I. Cârstea, N. Honda and G. Nakamura, Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity, preprint, arXiv: 1611.03930.

[11]

Ellis R. G. and D. W. Oldenburg, The pole-pole 3-D DC-resistivity inverse problem: A conjugate gradient approach, Geophysical Journal International, 119 (1994), 187-194.

[12]

C. G. Farquharson, Constructing piecewise-constant models in multidimensional minimum-structure inversions, Geophysics, 73 (2007), K1-K9. doi: 10.1190/1.2816650.

[13]

R. Gaburro and W. R. B. Lionheart, Recovering Riemannian metrics in monotone families from boundary data, Inverse Problems, 25 (2009), 045004, 14 pp.

[14]

R. Gaburro and E. Sincich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities, Inverse Problems, 31 (2015), 015008, 26pp.

[15]

L. A. Gallardo and M. A. Meju, Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints, Journal of Geophysical Research, 109 (2004), B03311. doi: 10.1029/2003JB002716.

[16]

T. GüntherC. Rücker and K. Spitzer, Three-dimensional modelling and inversion of dc resistivity data incorporating topography Ⅱ. Inversion, Geophysical Journal International, 166 (2006), 506-517.

[17]

E. Haber and D. Oldenburg, Joint inversion: A structural approach, Inverse Problems, 13 (1997), 63-77. doi: 10.1088/0266-5611/13/1/006.

[18]

M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl., 8 (2000), 273-285.

[19]

R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.

[20]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup., 34 (2001), 771-787. doi: 10.1016/S0012-9593(01)01076-X.

[21]

M. LassasG. Uhlmann and M. Taylor, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221. doi: 10.4310/CAG.2003.v11.n2.a2.

[22]

J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112. doi: 10.1002/cpa.3160420804.

[23]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134. doi: 10.1088/0266-5611/13/1/010.

[24]

M. H. LokeI. Acworth and T. Dahlin, A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys, Exploration Geophysics, 34 (2003), 182-187. doi: 10.1071/EG03182.

[25]

A. Malinverno and C. Torres-Verdín, Bayesian inversion of DC electrical measurements with uncertainties for reservoir monitoring, Inverse Problems, 16 (2000), 1343-1356. doi: 10.1088/0266-5611/16/5/313.

[26]

A. Nachman, Global uniqueness for a two dimensional inverse boundary value problem, Ann. Math., 143 (1995), 71-96. doi: 10.2307/2118653.

[27]

A. Paré and Y. Li, Improved imaging of sharp boundaries in DC resistivity, SEG International Exposition and Annual Meeting (SEG-2017-17739005), (2017), 24-29.

[28]

J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure. Appl. Math., 43 (1990), 201-232. doi: 10.1002/cpa.3160430203.

[29]

G. Uhlmann, Electrical impedance tomography and Calder´on's problem (topical review), Inverse Problems, 25 (2009), 123011, 39pp.

[30]

J. ZhangR. L. Mackie and T. R. Madden, 3-D resistivity forward modeling and inversion using conjugate gradients, SEG Technical Program Expanded Abstracts, (1994), 377-380. doi: 10.1190/1.1932101.

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), 140, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003.

[2]

G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Differential Equations, 84 (1990), 252-272. doi: 10.1016/0022-0396(90)90078-4.

[3]

G. AlessandriniM. V. de Hoop and R. Gaburro, Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities, Inverse Problems, 33 (2017), 125013.

[4]

G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, SIAM J. Math. Anal., 33 (2001), 153-171. doi: 10.1137/S0036141000369563.

[5]

G. Alessandrini and R. Gaburro, The local Calderón problem and the determination at the boundary of the conductivity, Comm. Partial Differential Equations, 34 (2009), 918-936. doi: 10.1080/03605300903017397.

[6]

K. AstalaM. Lassas and L. Päivärinta, Calderón inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224. doi: 10.1081/PDE-200044485.

[7]

M. I. Belishev, The Calderón problem for two-dimensional manifolds by the BC-Method, SIAM J. Math. Anal., 35 (2003), 172-182. doi: 10.1137/S0036141002413919.

[8]

E. Bierstone and P. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5-42.

[9]

A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. Reprinted in: Comput. Appl. Math., 25 (2006), 133–138.

[10]

C. I. Cârstea, N. Honda and G. Nakamura, Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity, preprint, arXiv: 1611.03930.

[11]

Ellis R. G. and D. W. Oldenburg, The pole-pole 3-D DC-resistivity inverse problem: A conjugate gradient approach, Geophysical Journal International, 119 (1994), 187-194.

[12]

C. G. Farquharson, Constructing piecewise-constant models in multidimensional minimum-structure inversions, Geophysics, 73 (2007), K1-K9. doi: 10.1190/1.2816650.

[13]

R. Gaburro and W. R. B. Lionheart, Recovering Riemannian metrics in monotone families from boundary data, Inverse Problems, 25 (2009), 045004, 14 pp.

[14]

R. Gaburro and E. Sincich, Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities, Inverse Problems, 31 (2015), 015008, 26pp.

[15]

L. A. Gallardo and M. A. Meju, Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints, Journal of Geophysical Research, 109 (2004), B03311. doi: 10.1029/2003JB002716.

[16]

T. GüntherC. Rücker and K. Spitzer, Three-dimensional modelling and inversion of dc resistivity data incorporating topography Ⅱ. Inversion, Geophysical Journal International, 166 (2006), 506-517.

[17]

E. Haber and D. Oldenburg, Joint inversion: A structural approach, Inverse Problems, 13 (1997), 63-77. doi: 10.1088/0266-5611/13/1/006.

[18]

M. Ikehata, Identification of the curve of discontinuity of the determinant of the anisotropic conductivity, J. Inverse Ill-Posed Probl., 8 (2000), 273-285.

[19]

R. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.

[20]

M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, Ann. Sci. École Norm. Sup., 34 (2001), 771-787. doi: 10.1016/S0012-9593(01)01076-X.

[21]

M. LassasG. Uhlmann and M. Taylor, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Anal. Geom., 11 (2003), 207-221. doi: 10.4310/CAG.2003.v11.n2.a2.

[22]

J. M. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112. doi: 10.1002/cpa.3160420804.

[23]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134. doi: 10.1088/0266-5611/13/1/010.

[24]

M. H. LokeI. Acworth and T. Dahlin, A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys, Exploration Geophysics, 34 (2003), 182-187. doi: 10.1071/EG03182.

[25]

A. Malinverno and C. Torres-Verdín, Bayesian inversion of DC electrical measurements with uncertainties for reservoir monitoring, Inverse Problems, 16 (2000), 1343-1356. doi: 10.1088/0266-5611/16/5/313.

[26]

A. Nachman, Global uniqueness for a two dimensional inverse boundary value problem, Ann. Math., 143 (1995), 71-96. doi: 10.2307/2118653.

[27]

A. Paré and Y. Li, Improved imaging of sharp boundaries in DC resistivity, SEG International Exposition and Annual Meeting (SEG-2017-17739005), (2017), 24-29.

[28]

J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure. Appl. Math., 43 (1990), 201-232. doi: 10.1002/cpa.3160430203.

[29]

G. Uhlmann, Electrical impedance tomography and Calder´on's problem (topical review), Inverse Problems, 25 (2009), 123011, 39pp.

[30]

J. ZhangR. L. Mackie and T. R. Madden, 3-D resistivity forward modeling and inversion using conjugate gradients, SEG Technical Program Expanded Abstracts, (1994), 377-380. doi: 10.1190/1.1932101.

[1]

Laurent Lévi, Julien Jimenez. Coupling of scalar conservation laws in stratified porous media. Conference Publications, 2007, 2007 (Special) : 644-654. doi: 10.3934/proc.2007.2007.644

[2]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[3]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[4]

Matthew M. Dunlop, Andrew M. Stuart. The Bayesian formulation of EIT: Analysis and algorithms. Inverse Problems & Imaging, 2016, 10 (4) : 1007-1036. doi: 10.3934/ipi.2016030

[5]

Bruce Hughes. Geometric topology of stratified spaces. Electronic Research Announcements, 1996, 2: 73-81.

[6]

Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks & Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313

[7]

Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477

[8]

Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems & Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43

[9]

Cristopher Hermosilla. Stratified discontinuous differential equations and sufficient conditions for robustness. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4415-4437. doi: 10.3934/dcds.2015.35.4415

[10]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[11]

David Henry, Bogdan--Vasile Matioc. On the regularity of steady periodic stratified water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1453-1464. doi: 10.3934/cpaa.2012.11.1453

[12]

Melody Alsaker, Jennifer L. Mueller. Use of an optimized spatial prior in D-bar reconstructions of EIT tank data. Inverse Problems & Imaging, 2018, 12 (4) : 883-901. doi: 10.3934/ipi.2018037

[13]

D. Sanchez. Boundary layer on a high-conductivity domain. Communications on Pure & Applied Analysis, 2002, 1 (4) : 547-564. doi: 10.3934/cpaa.2002.1.547

[14]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[15]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[16]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[17]

Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems & Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397

[18]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem with degenerate thermal conductivity. Communications on Pure & Applied Analysis, 2002, 1 (3) : 313-325. doi: 10.3934/cpaa.2002.1.313

[19]

María Teresa González Montesinos, Francisco Ortegón Gallego. The thermistor problem with degenerate thermal conductivity and metallic conduction. Conference Publications, 2007, 2007 (Special) : 446-455. doi: 10.3934/proc.2007.2007.446

[20]

Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (56)
  • HTML views (165)
  • Cited by (0)

[Back to Top]