June 2018, 12(3): 527-543. doi: 10.3934/ipi.2018023

Recovering a large number of diffusion constants in a parabolic equation from energy measurements

Politecnico di Milano, Piazza Leonardo da Vinci 32, 2013 Milano, Italy

Received  April 2017 Revised  November 2017 Published  March 2018

Let
$\left(H, \left\langle { \cdot , \cdot } \right\rangle \right)$
be a separable Hilbert space and
$A_{i}:D(A_i) \to H$
(
$i = 1,···,n$
) be a family of nonnegative and self-adjoint operators mutually commuting. We study the inverse problem consisting in the identification of a function
$u:[0,T] \to H$
and
$n$
constants
$α_{1},···,α_{n} > 0$
(diffusion coefficients) that fulfill the initial-value problem
$ u'(t) + α_{1} A_{1}u(t) + ··· + α_{n} A_{n}u(t) = 0, ~~~t ∈ (0,T), ~~~u(0) = x,$
and the additional conditions
$\left\langle A_{1} u(T),u(T)\right\rangle = \varphi_{1}, ~~~··· ~~~,\left\langle A_{n} u(T),u(T)\right\rangle = \varphi_{n},$
where
$\varphi_{i}$
are given positive constants. Under suitable assumptions on the operators
$A_{i}$
and on the initial data
$x ∈ H$
, we shall prove that the solution of such a problem is unique and depends continuously on the data. We apply the abstract result to the identification of diffusion constants in a heat equation and of the Lamé parameters in a elasticity problem on a plate.
Citation: Gianluca Mola. Recovering a large number of diffusion constants in a parabolic equation from energy measurements. Inverse Problems & Imaging, 2018, 12 (3) : 527-543. doi: 10.3934/ipi.2018023
References:
[1]

M. AkamatsuG. Nakamura and S. Steinberg, Identification of Lam6 coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354. doi: 10.1088/0266-5611/7/3/003.

[2]

E. A. Artyukhin and A. S. Okhapkin, Determination of the parameters in the generalized heat-conduction equation from transient experimental data, J. Eng. Phys. Thermophys., 42 (1982), 693-698. doi: 10.1007/BF00835106.

[3]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983; (English Translation) Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.

[4]

J. R. Cannon, Determination of certain parameters in heat conduction problems, J. Math. Anal. Appl., 8 (1964), 188-201. doi: 10.1016/0022-247X(64)90061-7.

[5]

K. -C. Chang, Methods in Nonlinear Analysis, Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

[6]

D. Gale and H. Nikaido, The jacobian matrix and global univalence of mappings, Math. Annalen, 159 (1965), 81-93. doi: 10.1007/BF01360282.

[7]

T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976.

[8]

A. Lorenzi, Recovering two constants in a parabolic linear equation, Journal of Physics: Conference Series, 73 (2007). doi: 10.1088/1742-6596/73/1/012014.

[9]

A. Lorenzi and G. Mola, Identification of a real constant in linear evolution equations in Hilbert spaces, Inverse Problems and Imaging, 5 (2011), 695-714. doi: 10.3934/ipi.2011.5.695.

[10]

A. Lorenzi and G. Mola, Recovering the reaction and the diffusion coefficients in a linear parabolic equation, Inverse Problems, 28 (2012), 075006, 23 pp.

[11]

L. Lorenzi, An identification problem for the Ornstein-Uhlenbeck operator, Journal of Inverse and Ill-posed Problems, 19 (2011), 293-326.

[12]

A. Sh. Lyubanova, Identification of a constant coefficient in an elliptic equation, Appl. Anal., 87 (2008), 1121-1128. doi: 10.1080/00036810802189654.

[13]

G. Mola, Identification of the diffusion coefficient in linear evolution equations in Hilbert spaces, J. Abstract Differential Equations and Applications, 2 (2011), 14-28.

[14]

G. Mola, N. Okazawa and T. Yokota, Reconstruction of two constant coefficients in linear anisotropic diffusion model, Inverse Problems, 32 (2016), 115016, 22 pp.

[15]

G. MolaN. OkazawaJ. Prüss and T. Yokota, Semigroup-theoretic approach to identification of linear diffusion coefficients, Discrete Continuous Dynamical Systems, Series S, 9 (2016), 777-790. doi: 10.3934/dcdss.2016028.

[16]

G. Nakamura and G. Uhlmann, Identification of Lame parameters by boundary measurements, American Journal of Mathematics, 115 (1993), 1161-1187. doi: 10.2307/2375069.

[17]

N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan, 34 (1982), 677-701. doi: 10.2969/jmsj/03440677.

[18]

S. J. L. van Eijndhoven and J. de Graaf, A Fundamental Approach to the Generalized Eigenvalue Problem for Self-Adjoint Operators, J. Functional Analysis, 63 (1985), 74-85. doi: 10.1016/0022-1236(85)90098-9.

[19]

M. Yamamoto, Determination of constant parameters in some semilinear parabolic equations, Ill-posed Problems in Natural Sciences (Moscow, 1991), VSP, Utrecht, 1992,439-445.

show all references

References:
[1]

M. AkamatsuG. Nakamura and S. Steinberg, Identification of Lam6 coefficients from boundary observations, Inverse Problems, 7 (1991), 335-354. doi: 10.1088/0266-5611/7/3/003.

[2]

E. A. Artyukhin and A. S. Okhapkin, Determination of the parameters in the generalized heat-conduction equation from transient experimental data, J. Eng. Phys. Thermophys., 42 (1982), 693-698. doi: 10.1007/BF00835106.

[3]

H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983; (English Translation) Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.

[4]

J. R. Cannon, Determination of certain parameters in heat conduction problems, J. Math. Anal. Appl., 8 (1964), 188-201. doi: 10.1016/0022-247X(64)90061-7.

[5]

K. -C. Chang, Methods in Nonlinear Analysis, Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

[6]

D. Gale and H. Nikaido, The jacobian matrix and global univalence of mappings, Math. Annalen, 159 (1965), 81-93. doi: 10.1007/BF01360282.

[7]

T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin and New York, 1966; 2nd ed., 1976.

[8]

A. Lorenzi, Recovering two constants in a parabolic linear equation, Journal of Physics: Conference Series, 73 (2007). doi: 10.1088/1742-6596/73/1/012014.

[9]

A. Lorenzi and G. Mola, Identification of a real constant in linear evolution equations in Hilbert spaces, Inverse Problems and Imaging, 5 (2011), 695-714. doi: 10.3934/ipi.2011.5.695.

[10]

A. Lorenzi and G. Mola, Recovering the reaction and the diffusion coefficients in a linear parabolic equation, Inverse Problems, 28 (2012), 075006, 23 pp.

[11]

L. Lorenzi, An identification problem for the Ornstein-Uhlenbeck operator, Journal of Inverse and Ill-posed Problems, 19 (2011), 293-326.

[12]

A. Sh. Lyubanova, Identification of a constant coefficient in an elliptic equation, Appl. Anal., 87 (2008), 1121-1128. doi: 10.1080/00036810802189654.

[13]

G. Mola, Identification of the diffusion coefficient in linear evolution equations in Hilbert spaces, J. Abstract Differential Equations and Applications, 2 (2011), 14-28.

[14]

G. Mola, N. Okazawa and T. Yokota, Reconstruction of two constant coefficients in linear anisotropic diffusion model, Inverse Problems, 32 (2016), 115016, 22 pp.

[15]

G. MolaN. OkazawaJ. Prüss and T. Yokota, Semigroup-theoretic approach to identification of linear diffusion coefficients, Discrete Continuous Dynamical Systems, Series S, 9 (2016), 777-790. doi: 10.3934/dcdss.2016028.

[16]

G. Nakamura and G. Uhlmann, Identification of Lame parameters by boundary measurements, American Journal of Mathematics, 115 (1993), 1161-1187. doi: 10.2307/2375069.

[17]

N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces, J. Math. Soc. Japan, 34 (1982), 677-701. doi: 10.2969/jmsj/03440677.

[18]

S. J. L. van Eijndhoven and J. de Graaf, A Fundamental Approach to the Generalized Eigenvalue Problem for Self-Adjoint Operators, J. Functional Analysis, 63 (1985), 74-85. doi: 10.1016/0022-1236(85)90098-9.

[19]

M. Yamamoto, Determination of constant parameters in some semilinear parabolic equations, Ill-posed Problems in Natural Sciences (Moscow, 1991), VSP, Utrecht, 1992,439-445.

[1]

Alfredo Lorenzi, Gianluca Mola. Identification of a real constant in linear evolution equations in Hilbert spaces. Inverse Problems & Imaging, 2011, 5 (3) : 695-714. doi: 10.3934/ipi.2011.5.695

[2]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure & Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[3]

Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 15-34. doi: 10.3934/eect.2017002

[4]

Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030

[5]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[6]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[7]

Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455

[8]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[9]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[10]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[11]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[12]

Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005

[13]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[14]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[15]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[16]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[17]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[18]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[19]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[20]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (97)
  • HTML views (179)
  • Cited by (0)

Other articles
by authors

[Back to Top]