2016, 10(2): 379-407. doi: 10.3934/ipi.2016005

Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems

1. 

Institut de Mathématiques, Université de Toulouse, 118, Route de Narbonne, F-31062 Toulouse Cedex 9

Received  April 2015 Published  May 2016

We study the iterated quasi-reversibility method to regularize ill-posed elliptic and parabolic problems: data completion problems for Poisson's and heat equations. We define an abstract setting to treat both equations at once. We demonstrate the convergence of the regularized solution to the exact one, and propose a strategy to deal with noise on the data. We present numerical experiments for both problems: a two-dimensional corrosion detection problem and the one-dimensional heat equation with lateral data. In both cases, the method proves to be efficient even with highly corrupted data.
Citation: Jérémi Dardé. Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Problems & Imaging, 2016, 10 (2) : 379-407. doi: 10.3934/ipi.2016005
References:
[1]

G. Alessandrini, L. Del Piero and L Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse problems, 19 (2003), 973. doi: 10.1088/0266-5611/19/4/312.

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123004.

[3]

K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of the backward heat equation,, Journal of Inequalities and Applications, 3 (1999), 51. doi: 10.1155/S1025583499000041.

[4]

S. Andrieux, T. N. Baranger and A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional,, Inverse problems, 22 (2006), 115. doi: 10.1088/0266-5611/22/1/007.

[5]

M. Azaïez, F. Ben Belgacem and H. El Fekih, On Cauchy's problem: II. Completion, regularization and approximation,, Inverse Problems, 22 (2006), 1307. doi: 10.1088/0266-5611/22/4/012.

[6]

A. Ben Abda, J. Blum, C. Boulbe and B. Faugeras, Minimization of an energy error functional to solve a Cauchy problem arising in plasma physics: The reconstruction of the magnetic flux in the vacuum surrounding the plasma in a Tokamak,, ARIMA 15 (2012), 15 (2012), 37.

[7]

L. Baratchart, L. Bourgeois and J. Leblond, Uniqueness results for inverse Robin problems with bounded coefficient,, J. Funct. Anal., 270 (2016), 2508. doi: 10.1016/j.jfa.2016.01.011.

[8]

F. Ben Belgacem, Why is the Cauchy problem severely ill-posed?,, Inverse problems, 23 (2007), 823. doi: 10.1088/0266-5611/23/2/020.

[9]

F. Ben Belgacem, D. T. Du and F. Jelassi, Extended-domain-Lavrentiev's regularization for the Cauchy problem,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045005.

[10]

J. Blum, C. Boulbe and B. Faugeras, Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time,, Journal of Computational Physics, 231 (2012), 960. doi: 10.1016/j.jcp.2011.04.005.

[11]

Y. Boukari and H. Haddar, A convergent data completion algorithm using surface integral equations,, Inverse Problems, 31 (2015). doi: 10.1088/0266-5611/31/3/035011.

[12]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087. doi: 10.1088/0266-5611/21/3/018.

[13]

L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 22 (2006), 413. doi: 10.1088/0266-5611/22/2/002.

[14]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095016.

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351. doi: 10.3934/ipi.2010.4.351.

[16]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23. doi: 10.3934/ipi.2014.8.23.

[17]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011). doi: 10.1007/978-0-387-70914-7.

[18]

K. Bryan and L. F. Caudill, Jr., An inverse problem in thermal imaging,, SIAM J. Appl. Math., 56 (1996), 715. doi: 10.1137/S0036139994277828.

[19]

E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem,, Mathematics of Computation, (2016). doi: 10.1090/mcom/3092.

[20]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/3/035005.

[21]

S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse problems, 15 (1999), 1425. doi: 10.1088/0266-5611/15/6/303.

[22]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, (2002). doi: 10.1137/1.9780898719208.

[23]

A. Cimetière, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization,, Inverse problems, 17 (2001), 553. doi: 10.1088/0266-5611/17/3/313.

[24]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems,, Electronic Journal of Differential Equations, 8 (1994), 1.

[25]

C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM Journal on Scientific Computing, 30 (2007), 1. doi: 10.1137/06066970X.

[26]

J. Dardé, The 'exterior approach': A new framework to solve inverse obstacle problems,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/1/015008.

[27]

J. Dardé, A. Hannukainen and N. Hyvönen, An $H_text{div}$-Based Mixed Quasi-reversibility Method for Solving Elliptic Cauchy Problems,, SIAM J. Numer. Anal., 51 (2013), 2123. doi: 10.1137/120895123.

[28]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-1740-8.

[29]

D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical results and numerical methods,, Inverse problems, 15 (1999), 41. doi: 10.1088/0266-5611/15/1/008.

[30]

P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions,, Math. Models Methods Appl. Sci., 7 (1997), 957. doi: 10.1142/S0218202597000487.

[31]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Classic in Applied Mathematics, (2011). doi: 10.1137/1.9781611972030.

[32]

H. Harbrecht and J. Tausch, On the numerical solution of a shape optimization problem for the heat equation,, SIAM J. Sci. Comput., 35 (2013). doi: 10.1137/110855703.

[33]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075005.

[34]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation,, SIAM Journal on Applied Mathematics, 51 (1991), 1653. doi: 10.1137/0151085.

[35]

R. Lattès and J. L. Lions, The Method of Quasi-reversibility: Applications to Partial Differential Equations,, American Elsevier Publishing Company, (1969).

[36]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712. doi: 10.1051/cocv/2011168.

[37]

R. E. Puzyrev and A. A. Shlapunov, On an Ill-posed problem for the heat equation,, Journal of Siberian Federal University, 5 (2012), 337.

[38]

E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse problems, 23 (2007), 1311. doi: 10.1088/0266-5611/23/3/027.

[39]

A. N. Tykhonov, Solution of incorrectly formulated problems and the regularization method,, Soviet Math. Dokl., 4 (1063).

show all references

References:
[1]

G. Alessandrini, L. Del Piero and L Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse problems, 19 (2003), 973. doi: 10.1088/0266-5611/19/4/312.

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123004.

[3]

K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of the backward heat equation,, Journal of Inequalities and Applications, 3 (1999), 51. doi: 10.1155/S1025583499000041.

[4]

S. Andrieux, T. N. Baranger and A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional,, Inverse problems, 22 (2006), 115. doi: 10.1088/0266-5611/22/1/007.

[5]

M. Azaïez, F. Ben Belgacem and H. El Fekih, On Cauchy's problem: II. Completion, regularization and approximation,, Inverse Problems, 22 (2006), 1307. doi: 10.1088/0266-5611/22/4/012.

[6]

A. Ben Abda, J. Blum, C. Boulbe and B. Faugeras, Minimization of an energy error functional to solve a Cauchy problem arising in plasma physics: The reconstruction of the magnetic flux in the vacuum surrounding the plasma in a Tokamak,, ARIMA 15 (2012), 15 (2012), 37.

[7]

L. Baratchart, L. Bourgeois and J. Leblond, Uniqueness results for inverse Robin problems with bounded coefficient,, J. Funct. Anal., 270 (2016), 2508. doi: 10.1016/j.jfa.2016.01.011.

[8]

F. Ben Belgacem, Why is the Cauchy problem severely ill-posed?,, Inverse problems, 23 (2007), 823. doi: 10.1088/0266-5611/23/2/020.

[9]

F. Ben Belgacem, D. T. Du and F. Jelassi, Extended-domain-Lavrentiev's regularization for the Cauchy problem,, Inverse Problems, 27 (2011). doi: 10.1088/0266-5611/27/4/045005.

[10]

J. Blum, C. Boulbe and B. Faugeras, Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time,, Journal of Computational Physics, 231 (2012), 960. doi: 10.1016/j.jcp.2011.04.005.

[11]

Y. Boukari and H. Haddar, A convergent data completion algorithm using surface integral equations,, Inverse Problems, 31 (2015). doi: 10.1088/0266-5611/31/3/035011.

[12]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087. doi: 10.1088/0266-5611/21/3/018.

[13]

L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 22 (2006), 413. doi: 10.1088/0266-5611/22/2/002.

[14]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010). doi: 10.1088/0266-5611/26/9/095016.

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351. doi: 10.3934/ipi.2010.4.351.

[16]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23. doi: 10.3934/ipi.2014.8.23.

[17]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011). doi: 10.1007/978-0-387-70914-7.

[18]

K. Bryan and L. F. Caudill, Jr., An inverse problem in thermal imaging,, SIAM J. Appl. Math., 56 (1996), 715. doi: 10.1137/S0036139994277828.

[19]

E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem,, Mathematics of Computation, (2016). doi: 10.1090/mcom/3092.

[20]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/3/035005.

[21]

S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse problems, 15 (1999), 1425. doi: 10.1088/0266-5611/15/6/303.

[22]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, (2002). doi: 10.1137/1.9780898719208.

[23]

A. Cimetière, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization,, Inverse problems, 17 (2001), 553. doi: 10.1088/0266-5611/17/3/313.

[24]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems,, Electronic Journal of Differential Equations, 8 (1994), 1.

[25]

C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM Journal on Scientific Computing, 30 (2007), 1. doi: 10.1137/06066970X.

[26]

J. Dardé, The 'exterior approach': A new framework to solve inverse obstacle problems,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/1/015008.

[27]

J. Dardé, A. Hannukainen and N. Hyvönen, An $H_text{div}$-Based Mixed Quasi-reversibility Method for Solving Elliptic Cauchy Problems,, SIAM J. Numer. Anal., 51 (2013), 2123. doi: 10.1137/120895123.

[28]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-1740-8.

[29]

D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical results and numerical methods,, Inverse problems, 15 (1999), 41. doi: 10.1088/0266-5611/15/1/008.

[30]

P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions,, Math. Models Methods Appl. Sci., 7 (1997), 957. doi: 10.1142/S0218202597000487.

[31]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Classic in Applied Mathematics, (2011). doi: 10.1137/1.9781611972030.

[32]

H. Harbrecht and J. Tausch, On the numerical solution of a shape optimization problem for the heat equation,, SIAM J. Sci. Comput., 35 (2013). doi: 10.1137/110855703.

[33]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075005.

[34]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation,, SIAM Journal on Applied Mathematics, 51 (1991), 1653. doi: 10.1137/0151085.

[35]

R. Lattès and J. L. Lions, The Method of Quasi-reversibility: Applications to Partial Differential Equations,, American Elsevier Publishing Company, (1969).

[36]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712. doi: 10.1051/cocv/2011168.

[37]

R. E. Puzyrev and A. A. Shlapunov, On an Ill-posed problem for the heat equation,, Journal of Siberian Federal University, 5 (2012), 337.

[38]

E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse problems, 23 (2007), 1311. doi: 10.1088/0266-5611/23/3/027.

[39]

A. N. Tykhonov, Solution of incorrectly formulated problems and the regularization method,, Soviet Math. Dokl., 4 (1063).

[1]

Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems & Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351

[2]

Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971

[3]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[4]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[5]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[6]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[7]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[8]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

[9]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[10]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[11]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[12]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[13]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[14]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[15]

T. J. Sullivan. Well-posed Bayesian inverse problems and heavy-tailed stable quasi-Banach space priors. Inverse Problems & Imaging, 2017, 11 (5) : 857-874. doi: 10.3934/ipi.2017040

[16]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[17]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[18]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[19]

Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems & Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103

[20]

Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]