May  2015, 9(2): 591-600. doi: 10.3934/ipi.2015.9.591

Determining an obstacle by far-field data measured at a few spots

1. 

Department of Computing Sciences, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an,710049

Received  January 2014 Revised  May 2014 Published  March 2015

We consider the inverse scattering problem of determining an acoustic sound-soft obstacle by using the far-field data. It is shown that if the shape of the obstacle is known in advance, then the far-field data measured at four different spots can uniquely determine the location and size of the obstacle. If the shape of the obstacle is unknown, we show that the location of the obstacle can be approximately determined by using the far-field data measured at four appropriately chosen spots.
Citation: Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems & Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591
References:
[1]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering,, SIAM, (2011). doi: 10.1137/1.9780898719406. Google Scholar

[2]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $2^{nd}$ edition, (1998). doi: 10.1007/978-3-662-03537-5. Google Scholar

[3]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253. doi: 10.1093/imamat/31.3.253. Google Scholar

[4]

G. Dassios and R. Kleinman, Low Frequency Scattering,, Clarendon Press, (2000). Google Scholar

[5]

G. Hu, X. Liu and B. Zhang, Unique determination of a perfectly conducting ball by a finite number of electric far field data,, J. Math. Anal. Appl., 352 (2009), 861. doi: 10.1016/j.jmaa.2008.09.016. Google Scholar

[6]

V. Isakov, Inverse Problems for Partial Differential Equations,, Volume 127, (1998). doi: 10.1007/978-1-4899-0030-2. Google Scholar

[7]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008). Google Scholar

[8]

J. Li, H. Y. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers,, SIAM J. Appl. Math., 73 (2013), 1721. doi: 10.1137/130907690. Google Scholar

[9]

J. Li, H. Y. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285. doi: 10.1137/130920356. Google Scholar

[10]

H. Y. Liu and J. Zou, Zeros of Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering,, IMA J. Appl. Math., 72 (2007), 817. doi: 10.1093/imamat/hxm013. Google Scholar

[11]

J. Li, H. Y. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285. doi: 10.1137/130920356. Google Scholar

[12]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data,, Inverse Problems and Imaging, 7 (2013), 757. doi: 10.3934/ipi.2013.7.757. Google Scholar

[13]

J. Li, H. Y. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems,, SIAM Journal on Scientific Computing, 30 (2008), 1228. doi: 10.1137/060674247. Google Scholar

[14]

J. Li, H. Y. Liu and J. Zou, Strengthened linear sampling method with a reference ball,, SIAM Journal on Scientific Computing, 31 (2009), 4013. doi: 10.1137/080734170. Google Scholar

[15]

J. Li, H. Y. Liu and J. Zou, Locating multiple multiscale acoustic scatterers,, SIAM Multiscale Modeling and Simulations, 12 (2014), 927. doi: 10.1137/13093409X. Google Scholar

[16]

H. Y. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems,, Journal of Physics: Conference Series, 124 (2008). doi: 10.1088/1742-6596/124/1/012006. Google Scholar

[17]

R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory,, Chapman & Hall/CRC Research Notes in Mathematics, (2001). doi: 10.1201/9781420035483. Google Scholar

show all references

References:
[1]

F. Cakoni, D. Colton and P. Monk, The Linear Sampling Method in Inverse Electromagnetic Scattering,, SIAM, (2011). doi: 10.1137/1.9780898719406. Google Scholar

[2]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, $2^{nd}$ edition, (1998). doi: 10.1007/978-3-662-03537-5. Google Scholar

[3]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253. doi: 10.1093/imamat/31.3.253. Google Scholar

[4]

G. Dassios and R. Kleinman, Low Frequency Scattering,, Clarendon Press, (2000). Google Scholar

[5]

G. Hu, X. Liu and B. Zhang, Unique determination of a perfectly conducting ball by a finite number of electric far field data,, J. Math. Anal. Appl., 352 (2009), 861. doi: 10.1016/j.jmaa.2008.09.016. Google Scholar

[6]

V. Isakov, Inverse Problems for Partial Differential Equations,, Volume 127, (1998). doi: 10.1007/978-1-4899-0030-2. Google Scholar

[7]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008). Google Scholar

[8]

J. Li, H. Y. Liu, Z. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers,, SIAM J. Appl. Math., 73 (2013), 1721. doi: 10.1137/130907690. Google Scholar

[9]

J. Li, H. Y. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285. doi: 10.1137/130920356. Google Scholar

[10]

H. Y. Liu and J. Zou, Zeros of Bessel and spherical Bessel functions and their applications for uniqueness in inverse acoustic obstacle scattering,, IMA J. Appl. Math., 72 (2007), 817. doi: 10.1093/imamat/hxm013. Google Scholar

[11]

J. Li, H. Y. Liu and Q. Wang, Locating multiple multiscale electromagnetic scatterers by a single far-field measurement,, SIAM J. Imaging Sci., 6 (2013), 2285. doi: 10.1137/130920356. Google Scholar

[12]

J. Li and J. Zou, A direct sampling method for inverse scattering using far-field data,, Inverse Problems and Imaging, 7 (2013), 757. doi: 10.3934/ipi.2013.7.757. Google Scholar

[13]

J. Li, H. Y. Liu and J. Zou, Multilevel linear sampling method for inverse scattering problems,, SIAM Journal on Scientific Computing, 30 (2008), 1228. doi: 10.1137/060674247. Google Scholar

[14]

J. Li, H. Y. Liu and J. Zou, Strengthened linear sampling method with a reference ball,, SIAM Journal on Scientific Computing, 31 (2009), 4013. doi: 10.1137/080734170. Google Scholar

[15]

J. Li, H. Y. Liu and J. Zou, Locating multiple multiscale acoustic scatterers,, SIAM Multiscale Modeling and Simulations, 12 (2014), 927. doi: 10.1137/13093409X. Google Scholar

[16]

H. Y. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems,, Journal of Physics: Conference Series, 124 (2008). doi: 10.1088/1742-6596/124/1/012006. Google Scholar

[17]

R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory,, Chapman & Hall/CRC Research Notes in Mathematics, (2001). doi: 10.1201/9781420035483. Google Scholar

[1]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[2]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[3]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[4]

Johannes Elschner, Guanghui Hu, Masahiro Yamamoto. Uniqueness in inverse elastic scattering from unbounded rigid surfaces of rectangular type. Inverse Problems & Imaging, 2015, 9 (1) : 127-141. doi: 10.3934/ipi.2015.9.127

[5]

Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems & Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811

[6]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[7]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[8]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[9]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[10]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[11]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[12]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[13]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[14]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[15]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[16]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[17]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[18]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[19]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[20]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]