• Previous Article
    Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data
  • IPI Home
  • This Issue
  • Next Article
    A study of the one dimensional total generalised variation regularisation problem
2015, 9(2): 479-509. doi: 10.3934/ipi.2015.9.479

An improved fast local level set method for three-dimensional inverse gravimetry

1. 

Department of Mathematics, Michigan State University, East Lansing, MI 48824, United States, United States

2. 

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Received  February 2014 Revised  January 2015 Published  March 2015

We propose an improved fast local level set method for the inverse problem of gravimetry by developing two novel algorithms: one is of linear complexity designed for computing the Frechet derivative of the nonlinear domain inverse problem, and the other is designed for carrying out numerical continuation rapidly so as to obtain fictitious full measurement data from partial measurement. Since the Laplacian kernel is symmetric and translationally invariant, we design certain affine transformations to speed up the computational process in evaluating the Frechet derivative; since it decays rapidly away from diagonal, we carry out low-rank matrix approximation to reduce storage requirements. These properties are eventually translated into an algorithm of linear complexity and linear storage requirement for computing the derivative. Since the single layer density function, used in representing the potential, is smooth and periodic on an artificial hypersurface enclosing the target domain, the spectral expansion is allowed to approximate this density function, which eventually leads to rapid algorithms for carrying out the numerical continuation in both 2-D and 3-D cases. 2-D and 3-D numerical examples illustrate that this improved level-set method is capable of computing high-resolution inversions and handling 3-D large-scale inverse gravimetry problems.
Citation: Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems & Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479
References:
[1]

H. Bertete-Aguirre, E. Cherkaev and M. Oristaglio, Non-smooth gravity problem with total variation penalization functional,, Geophys. J. Int., 149 (2002), 499. doi: 10.1046/j.1365-246X.2002.01664.x.

[2]

M. Burger, A level set method for inverse problems,, Inverse Problems, 17 (2001), 1327. doi: 10.1088/0266-5611/17/5/307.

[3]

M. Burger and S. Osher, A survey on level set methods for inverse problems and optimal design,, European J. Appl. Math., 16 (2005), 263. doi: 10.1017/S0956792505006182.

[4]

T. Cecil, S. J. Osher and J. Qian, Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension,, J. Comput. Phys., 213 (2006), 458. doi: 10.1016/j.jcp.2005.08.020.

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd edition, (2013). doi: 10.1007/978-1-4614-4942-3.

[6]

T. DeLillo, V. Isakov, N. Valdivia and L. Wang, The detection of surface vibrations from interior acoustical pressure,, Inverse Problems, 19 (2003), 507. doi: 10.1088/0266-5611/19/3/302.

[7]

O. Dorn and D. Lesselier, Level set methods for inverse scattering,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/4/R01.

[8]

S. Hou, K. Solna and H.-K. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317. doi: 10.1016/j.jcp.2004.02.010.

[9]

V. Isakov, Inverse Source Problems,, American Mathematical Society, (1990). doi: 10.1090/surv/034.

[10]

V. Isakov, S. Leung and J. Qian, A fast local level set method for inverse gravimetry,, Comm. in Computational Physics, 10 (2011), 1044. doi: 10.4208/cicp.100710.021210a.

[11]

V. Isakov, S. Leung and J. Qian, A three-dimensional inverse gravimetry problem for ice with snow caps,, {Inverse Problems and Imaging}, 7 (2013), 523. doi: 10.3934/ipi.2013.7.523.

[12]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a 2-D binary obstacle by controlled evolution of a level-set,, Inverse Problems, 14 (1998), 685. doi: 10.1088/0266-5611/14/3/018.

[13]

W. Lu and Y. Y. Lu, Efficient boundary integral equation method for photonic crystal fibers,, Journal of Lightwave Technology, 30 (2012), 1610. doi: 10.1109/JLT.2012.2189355.

[14]

S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12. doi: 10.1016/0021-9991(88)90002-2.

[15]

J. Qian, L.-T. Cheng and S. J. Osher, A level set based Eulerian approach for anisotropic wave propagations,, Wave Motion, 37 (2003), 365. doi: 10.1016/S0165-2125(02)00101-4.

[16]

J. Qian and S. Leung, A level set method for paraxial multivalued traveltimes,, J. Comput. Phys., 197 (2004), 711. doi: 10.1016/j.jcp.2003.12.017.

[17]

J. Qian and S. Leung, A local level set method for paraxial multivalued geometric optics,, SIAM J. Sci. Comp., 28 (2006), 206. doi: 10.1137/030601673.

[18]

F. Santosa, A level-set approach for inverse problems involving obstacles,, Control, 1 (1996), 17.

[19]

K. van den Doel, U. Ascher and A. Leitao, Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems,, J. Sci. Comput., 43 (2010), 44. doi: 10.1007/s10915-009-9341-x.

[20]

H.-K. Zhao, T. Chan, B. Merriman and S. J. Osher, A variational level set approach for multiphase motion,, J. Comput. Phys., 127 (1996), 179. doi: 10.1006/jcph.1996.0167.

show all references

References:
[1]

H. Bertete-Aguirre, E. Cherkaev and M. Oristaglio, Non-smooth gravity problem with total variation penalization functional,, Geophys. J. Int., 149 (2002), 499. doi: 10.1046/j.1365-246X.2002.01664.x.

[2]

M. Burger, A level set method for inverse problems,, Inverse Problems, 17 (2001), 1327. doi: 10.1088/0266-5611/17/5/307.

[3]

M. Burger and S. Osher, A survey on level set methods for inverse problems and optimal design,, European J. Appl. Math., 16 (2005), 263. doi: 10.1017/S0956792505006182.

[4]

T. Cecil, S. J. Osher and J. Qian, Simplex free adaptive tree fast sweeping and evolution methods for solving level set equations in arbitrary dimension,, J. Comput. Phys., 213 (2006), 458. doi: 10.1016/j.jcp.2005.08.020.

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory,, 3rd edition, (2013). doi: 10.1007/978-1-4614-4942-3.

[6]

T. DeLillo, V. Isakov, N. Valdivia and L. Wang, The detection of surface vibrations from interior acoustical pressure,, Inverse Problems, 19 (2003), 507. doi: 10.1088/0266-5611/19/3/302.

[7]

O. Dorn and D. Lesselier, Level set methods for inverse scattering,, Inverse Problems, 22 (2006). doi: 10.1088/0266-5611/22/4/R01.

[8]

S. Hou, K. Solna and H.-K. Zhao, Imaging of location and geometry for extended targets using the response matrix,, J. Comput. Phys., 199 (2004), 317. doi: 10.1016/j.jcp.2004.02.010.

[9]

V. Isakov, Inverse Source Problems,, American Mathematical Society, (1990). doi: 10.1090/surv/034.

[10]

V. Isakov, S. Leung and J. Qian, A fast local level set method for inverse gravimetry,, Comm. in Computational Physics, 10 (2011), 1044. doi: 10.4208/cicp.100710.021210a.

[11]

V. Isakov, S. Leung and J. Qian, A three-dimensional inverse gravimetry problem for ice with snow caps,, {Inverse Problems and Imaging}, 7 (2013), 523. doi: 10.3934/ipi.2013.7.523.

[12]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a 2-D binary obstacle by controlled evolution of a level-set,, Inverse Problems, 14 (1998), 685. doi: 10.1088/0266-5611/14/3/018.

[13]

W. Lu and Y. Y. Lu, Efficient boundary integral equation method for photonic crystal fibers,, Journal of Lightwave Technology, 30 (2012), 1610. doi: 10.1109/JLT.2012.2189355.

[14]

S. J. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations,, J. Comput. Phys., 79 (1988), 12. doi: 10.1016/0021-9991(88)90002-2.

[15]

J. Qian, L.-T. Cheng and S. J. Osher, A level set based Eulerian approach for anisotropic wave propagations,, Wave Motion, 37 (2003), 365. doi: 10.1016/S0165-2125(02)00101-4.

[16]

J. Qian and S. Leung, A level set method for paraxial multivalued traveltimes,, J. Comput. Phys., 197 (2004), 711. doi: 10.1016/j.jcp.2003.12.017.

[17]

J. Qian and S. Leung, A local level set method for paraxial multivalued geometric optics,, SIAM J. Sci. Comp., 28 (2006), 206. doi: 10.1137/030601673.

[18]

F. Santosa, A level-set approach for inverse problems involving obstacles,, Control, 1 (1996), 17.

[19]

K. van den Doel, U. Ascher and A. Leitao, Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems,, J. Sci. Comput., 43 (2010), 44. doi: 10.1007/s10915-009-9341-x.

[20]

H.-K. Zhao, T. Chan, B. Merriman and S. J. Osher, A variational level set approach for multiphase motion,, J. Comput. Phys., 127 (1996), 179. doi: 10.1006/jcph.1996.0167.

[1]

Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems & Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523

[2]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[3]

Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems & Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032

[4]

Annalisa Iuorio, Christian Kuehn, Peter Szmolyan. Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-22. doi: 10.3934/dcdss.2020073

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems & Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

[7]

Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205

[8]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[9]

Kim Knudsen, Matti Lassas, Jennifer L. Mueller, Samuli Siltanen. Regularized D-bar method for the inverse conductivity problem. Inverse Problems & Imaging, 2009, 3 (4) : 599-624. doi: 10.3934/ipi.2009.3.599

[10]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[11]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[12]

Bin Dong, Aichi Chien, Yu Mao, Jian Ye, Fernando Vinuela, Stanley Osher. Level set based brain aneurysm capturing in 3D. Inverse Problems & Imaging, 2010, 4 (2) : 241-255. doi: 10.3934/ipi.2010.4.241

[13]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[14]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[15]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[16]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[17]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[18]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[19]

Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004

[20]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]