May  2015, 9(2): 371-393. doi: 10.3934/ipi.2015.9.371

Some geometric inverse problems for the linear wave equation

1. 

University of Sevilla, Dpto. E.D.A.N., Aptdo. 1160, 41080, Sevilla, Spain, Spain

Received  June 2014 Revised  November 2014 Published  March 2015

In this paper we consider some geometric inverse problems for the linear wave equation. We prove uniqueness results, we present some reconstruction algorithms and we perform numerical experiments in dimensions one and two.
Citation: Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371
References:
[1]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333. doi: 10.1088/0266-5611/18/5/308. Google Scholar

[2]

G. Alessandrini, A. Morassi and E. Rosset, Edi Size estimates,, in Inverse Problems: Theory and Applications (Cortona/Pisa, (2002), 1. doi: 10.1090/conm/333/05951. Google Scholar

[3]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531. doi: 10.1088/0266-5611/21/5/003. Google Scholar

[4]

C. Alvarez, C. Conca, R. Lecaros and J. H. Ortega, On the identification of a rigid body immersed in a fluid: A numerical approach,, Engineering Analysis with Boundary Elements, 32 (2008), 919. doi: 10.1016/j.enganabound.2007.02.007. Google Scholar

[5]

S. Andrieux, A. Ben Abda and M. Jaoua, On the inverse emergent plane crack problem,, Math. Methods Appl. Sci., 21 (1998), 895. doi: 10.1002/(SICI)1099-1476(19980710)21:10<895::AID-MMA975>3.0.CO;2-1. Google Scholar

[6]

S. Auliac, Développement d'outils d'optimisation pour FreeFem++,, These, (2014). Google Scholar

[7]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control Optim., 48 (): 2871. doi: 10.1137/070704332. Google Scholar

[8]

E. G. Birgin and J. M. Martínez, Improving ultimate convergence of an augmented Lagrangian method,, Optim. Methods Softw., 23 (2008), 177. doi: 10.1080/10556780701577730. Google Scholar

[9]

M. Bonnet and A. Constantinescu, Inverse problems in elasticity,, Inverse Problems, 21 (2005). doi: 10.1088/0266-5611/21/2/R01. Google Scholar

[10]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/4/045001. Google Scholar

[11]

A. R. Conn, N. I. M. Gould and P. L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds,, SIAM J. Numer. Anal., 28 (1991), 545. doi: 10.1137/0728030. Google Scholar

[12]

A. Doubova, E. Fernández-Cara, M. González-Burgos and J. H. Ortega, A geometric inverse problem for the Boussinesq system,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1213. doi: 10.3934/dcdsb.2006.6.1213. Google Scholar

[13]

A. Doubova, E. Fernández-Cara and J. H. Ortega, On the identification of a single body immersed in a Navier-Stokes fluid,, European J. Appl. Math., 18 (2007), 57. doi: 10.1017/S0956792507006821. Google Scholar

[14]

E. Fernández-Cara and F. Maestre, On some inverse problems arising in elastography,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/8/085001. Google Scholar

[15]

D. E. Finkel, DIRECT Optimization Algorithm User Guide,, Center for Research in Scientific Computation, (2003). Google Scholar

[16]

F. Hecht, New development in freefem++,, J. Numer. Math., 20 (2012), 251. Google Scholar

[17]

L. Hörmander, Linear Partial Differential Operators,, Third revised printing, (1969). Google Scholar

[18]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer, (2006). Google Scholar

[19]

L. Ji, R. McLaughlin, D. Renzi and J.-R. Yoon, Interior elastodynamics inverse problems: Shear wave speed reconstruction in transient elastography,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/051. Google Scholar

[20]

S. G. Johnson, The NLopt Nonlinear-optimization Package, 2011,, , (). Google Scholar

[21]

D. R. Jones, C. D. Perttunen and B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant,, J. Optim. Theory Appl., 79 (1993), 157. doi: 10.1007/BF00941892. Google Scholar

[22]

P. Kaelo and M. M. Ali, Some variants of the controlled random search algorithm for global optimization,, J. Optim. Theory Appl., 130 (2006), 253. doi: 10.1007/s10957-006-9101-0. Google Scholar

[23]

O. Kavian, Lectures on parameter identification,, in Three Courses on Partial Differential Equations, (2003), 125. Google Scholar

[24]

J.-L. Lions, Contrôlabilité Exacte [Exact Controllability],, With appendices by E. Zuazua, (1988). Google Scholar

[25]

A. E. Martínez-Castro, I. H. Faris and R. Gallego, Identification of cavities in a three-dimensional layer by minimization of an optimal cost functional expansion,, CMES Comput. Model. Eng. Sci., 87 (2012), 177. Google Scholar

[26]

J. Nocedal and S. J. Wright, Numerical Optimization,, Springer Series in Operations Research, (1999). doi: 10.1007/b98874. Google Scholar

[27]

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi and X. Li, Elastography: A quantitative method for imaging the elasticity of biological tissues,, Ultrasonic Imaging, 13 (1991), 111. doi: 10.1016/0161-7346(91)90079-W. Google Scholar

[28]

A. Y. Petrov, J. G. Chase, M. Sellier and P. D. Docherty, Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography,, Math. Biosci., 246 (2013), 191. doi: 10.1016/j.mbs.2013.08.012. Google Scholar

[29]

W. L. Price, A controlled random search procedure for global optimisation,, The Computer Journal, 20 (1977), 367. doi: 10.1093/comjnl/20.4.367. Google Scholar

[30]

W. L. Price, Global optimization by controlled random search,, J. Optim. Theory Appl., 40 (1983), 333. doi: 10.1007/BF00933504. Google Scholar

show all references

References:
[1]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333. doi: 10.1088/0266-5611/18/5/308. Google Scholar

[2]

G. Alessandrini, A. Morassi and E. Rosset, Edi Size estimates,, in Inverse Problems: Theory and Applications (Cortona/Pisa, (2002), 1. doi: 10.1090/conm/333/05951. Google Scholar

[3]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J. H. Ortega, Identification of immersed obstacles via boundary measurements,, Inverse Problems, 21 (2005), 1531. doi: 10.1088/0266-5611/21/5/003. Google Scholar

[4]

C. Alvarez, C. Conca, R. Lecaros and J. H. Ortega, On the identification of a rigid body immersed in a fluid: A numerical approach,, Engineering Analysis with Boundary Elements, 32 (2008), 919. doi: 10.1016/j.enganabound.2007.02.007. Google Scholar

[5]

S. Andrieux, A. Ben Abda and M. Jaoua, On the inverse emergent plane crack problem,, Math. Methods Appl. Sci., 21 (1998), 895. doi: 10.1002/(SICI)1099-1476(19980710)21:10<895::AID-MMA975>3.0.CO;2-1. Google Scholar

[6]

S. Auliac, Développement d'outils d'optimisation pour FreeFem++,, These, (2014). Google Scholar

[7]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control Optim., 48 (): 2871. doi: 10.1137/070704332. Google Scholar

[8]

E. G. Birgin and J. M. Martínez, Improving ultimate convergence of an augmented Lagrangian method,, Optim. Methods Softw., 23 (2008), 177. doi: 10.1080/10556780701577730. Google Scholar

[9]

M. Bonnet and A. Constantinescu, Inverse problems in elasticity,, Inverse Problems, 21 (2005). doi: 10.1088/0266-5611/21/2/R01. Google Scholar

[10]

C. Conca, P. Cumsille, J. Ortega and L. Rosier, On the detection of a moving obstacle in an ideal fluid by a boundary measurement,, Inverse Problems, 24 (2008). doi: 10.1088/0266-5611/24/4/045001. Google Scholar

[11]

A. R. Conn, N. I. M. Gould and P. L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds,, SIAM J. Numer. Anal., 28 (1991), 545. doi: 10.1137/0728030. Google Scholar

[12]

A. Doubova, E. Fernández-Cara, M. González-Burgos and J. H. Ortega, A geometric inverse problem for the Boussinesq system,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1213. doi: 10.3934/dcdsb.2006.6.1213. Google Scholar

[13]

A. Doubova, E. Fernández-Cara and J. H. Ortega, On the identification of a single body immersed in a Navier-Stokes fluid,, European J. Appl. Math., 18 (2007), 57. doi: 10.1017/S0956792507006821. Google Scholar

[14]

E. Fernández-Cara and F. Maestre, On some inverse problems arising in elastography,, Inverse Problems, 28 (2012). doi: 10.1088/0266-5611/28/8/085001. Google Scholar

[15]

D. E. Finkel, DIRECT Optimization Algorithm User Guide,, Center for Research in Scientific Computation, (2003). Google Scholar

[16]

F. Hecht, New development in freefem++,, J. Numer. Math., 20 (2012), 251. Google Scholar

[17]

L. Hörmander, Linear Partial Differential Operators,, Third revised printing, (1969). Google Scholar

[18]

V. Isakov, Inverse Problems for Partial Differential Equations,, Springer, (2006). Google Scholar

[19]

L. Ji, R. McLaughlin, D. Renzi and J.-R. Yoon, Interior elastodynamics inverse problems: Shear wave speed reconstruction in transient elastography,, Inverse Problems, 19 (2003). doi: 10.1088/0266-5611/19/6/051. Google Scholar

[20]

S. G. Johnson, The NLopt Nonlinear-optimization Package, 2011,, , (). Google Scholar

[21]

D. R. Jones, C. D. Perttunen and B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant,, J. Optim. Theory Appl., 79 (1993), 157. doi: 10.1007/BF00941892. Google Scholar

[22]

P. Kaelo and M. M. Ali, Some variants of the controlled random search algorithm for global optimization,, J. Optim. Theory Appl., 130 (2006), 253. doi: 10.1007/s10957-006-9101-0. Google Scholar

[23]

O. Kavian, Lectures on parameter identification,, in Three Courses on Partial Differential Equations, (2003), 125. Google Scholar

[24]

J.-L. Lions, Contrôlabilité Exacte [Exact Controllability],, With appendices by E. Zuazua, (1988). Google Scholar

[25]

A. E. Martínez-Castro, I. H. Faris and R. Gallego, Identification of cavities in a three-dimensional layer by minimization of an optimal cost functional expansion,, CMES Comput. Model. Eng. Sci., 87 (2012), 177. Google Scholar

[26]

J. Nocedal and S. J. Wright, Numerical Optimization,, Springer Series in Operations Research, (1999). doi: 10.1007/b98874. Google Scholar

[27]

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi and X. Li, Elastography: A quantitative method for imaging the elasticity of biological tissues,, Ultrasonic Imaging, 13 (1991), 111. doi: 10.1016/0161-7346(91)90079-W. Google Scholar

[28]

A. Y. Petrov, J. G. Chase, M. Sellier and P. D. Docherty, Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography,, Math. Biosci., 246 (2013), 191. doi: 10.1016/j.mbs.2013.08.012. Google Scholar

[29]

W. L. Price, A controlled random search procedure for global optimisation,, The Computer Journal, 20 (1977), 367. doi: 10.1093/comjnl/20.4.367. Google Scholar

[30]

W. L. Price, Global optimization by controlled random search,, J. Optim. Theory Appl., 40 (1983), 333. doi: 10.1007/BF00933504. Google Scholar

[1]

Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37

[2]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[3]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[4]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[5]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[6]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[7]

Yegana Ashrafova, Kamil Aida-Zade. Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-23. doi: 10.3934/jimo.2019091

[8]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[9]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[10]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[11]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[12]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[13]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[14]

Tiexiang Li, Tsung-Ming Huang, Wen-Wei Lin, Jenn-Nan Wang. On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. Inverse Problems & Imaging, 2018, 12 (4) : 1033-1054. doi: 10.3934/ipi.2018043

[15]

Taposh Kumar Das, Óscar López Pouso. New insights into the numerical solution of the Boltzmann transport equation for photons. Kinetic & Related Models, 2014, 7 (3) : 433-461. doi: 10.3934/krm.2014.7.433

[16]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[17]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. $L^p$ Estimates for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 427-442. doi: 10.3934/dcds.2003.9.427

[18]

Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387

[19]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[20]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]