May  2015, 9(2): 289-300. doi: 10.3934/ipi.2015.9.289

Recovery of the absorption coefficient in radiative transport from a single measurement

1. 

Department of Pediatrics - Cardiology, Baylor College of Medicine, Houston, TX, United States

Received  December 2013 Revised  January 2015 Published  March 2015

In this paper, we investigate the recovery of the absorption coefficient from boundary data assuming that the region of interest is illuminated at an initial time. We consider a sufficiently strong and isotropic, but otherwise unknown initial state of radiation. This work is part of an effort to reconstruct optical properties using unknown illumination embedded in the unknown medium.
    We break the problem into two steps. First, in a linear framework, we seek the simultaneous recovery of a forcing term of the form $\sigma(t,x,\theta) f(x)$ (with $\sigma$ known) and an isotropic initial condition $u_{0}(x)$ using the single measurement induced by these data. Based on exact boundary controllability, we derive a system of equations for the unknown terms $f$ and $u_{0}$. The system is shown to be Fredholm if $\sigma$ satisfies a certain positivity condition. We show that for generic term $\sigma$ and weakly absorbing media, this linear inverse problem is uniquely solvable with a stability estimate. In the second step, we use the stability results from the linear problem to address the nonlinearity in the recovery of a weak absorbing coefficient. We obtain a locally Lipschitz stability estimate.
Citation: Sebastian Acosta. Recovery of the absorption coefficient in radiative transport from a single measurement. Inverse Problems & Imaging, 2015, 9 (2) : 289-300. doi: 10.3934/ipi.2015.9.289
References:
[1]

S. Acosta, Time reversal for radiative transport with applications to inverse and control problems,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/8/085014. Google Scholar

[2]

V. Agoshkov, Boundary Value Problems for Transport Equations,, Modeling and Simulation in Science, (1998). doi: 10.1007/978-1-4612-1994-1. Google Scholar

[3]

D. S. Anikonov, A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography,, Inverse and Ill-posed Problems Series, (2002). Google Scholar

[4]

S. Arridge and J. Schotland, Optical tomography: Forward and inverse problems,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123010. Google Scholar

[5]

S. R. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/2/022. Google Scholar

[6]

S. R. Arridge, Methods in diffuse optical imaging,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), 4558. doi: 10.1098/rsta.2011.0311. Google Scholar

[7]

G. Bal, Inverse transport theory and applications,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/5/053001. Google Scholar

[8]

G. Bal and O. Pinaud, Kinetic models for imaging in random media,, Multiscale Model. Simul., 6 (2007), 792. doi: 10.1137/060678464. Google Scholar

[9]

G. Bal and O. Pinaud, Imaging using transport models for wave-wave correlations,, Math. Models Methods Appl. Sci., 21 (2011), 1071. doi: 10.1142/S0218202511005258. Google Scholar

[10]

G. Bal and K. Ren, Transport-based imaging in random media,, SIAM J. Appl. Math., 68 (2008), 1738. doi: 10.1137/070690122. Google Scholar

[11]

K. M. Case and P. F. Zweifel, Linear Transport Theory,, Addison-Wesley series in nuclear engineering, (1967). Google Scholar

[12]

C. Cercignani and E. Gabetta (eds.), Transport Phenomena and Kinetic Theory. Applications to Gases, Semiconductors, Photons, and Biological Systems,, Modeling and Simulation in Science, (2007). doi: 10.1007/978-0-8176-4554-0. Google Scholar

[13]

M. Cessenat, Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique,, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 831. Google Scholar

[14]

M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique,, C. R. Acad. Sci. Paris Sér. I Math., 300 (1985), 89. Google Scholar

[15]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6. Evolution problems. II,, Springer-Verlag, (1993). doi: 10.1007/978-3-642-58004-8. Google Scholar

[16]

T. Durduran, R. Choe, W. Baker and A. Yodh, Diffuse optics for tissue monitoring and tomography,, Rep. Prog. Phys., 73 (2010). Google Scholar

[17]

H. Egger and M. Schlottbom, An $L^p$ theory for stationary radiative transfer,, Appl. Anal., 93 (2014), 1283. doi: 10.1080/00036811.2013.826798. Google Scholar

[18]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000). Google Scholar

[19]

A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging,, Phys. Med. Biol., 50 (2005). doi: 10.1088/0031-9155/50/4/R01. Google Scholar

[20]

F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation,, J. Funct. Anal., 76 (1988), 110. doi: 10.1016/0022-1236(88)90051-1. Google Scholar

[21]

V. Isakov, Inverse Problems for Partial Differential Equations,, 2nd edition, (2006). Google Scholar

[22]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980). Google Scholar

[23]

A. D. Kim and M. Moscoso, Radiative transport theory for optical molecular imaging,, Inverse Problems, 22 (2006), 23. doi: 10.1088/0266-5611/22/1/002. Google Scholar

[24]

M. V. Klibanov and S. E. Pamyatnykh, Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate,, J. Math. Anal. Appl., 343 (2008), 352. doi: 10.1016/j.jmaa.2008.01.071. Google Scholar

[25]

M. V. Klibanov and M. Yamamoto, Exact controllability for the time dependent transport equation,, SIAM J. Control Optim., 46 (2007), 2071. doi: 10.1137/060652804. Google Scholar

[26]

M. Machida and M. Yamamoto, Global Lipschitz stability in determining coefficients of the radiative transport equation,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/3/035010. Google Scholar

[27]

M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory, vol. 46 of Series on Advances in Mathematics for Applied Sciences,, World Scientific Publishing Co., (1997). doi: 10.1142/9789812819833. Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[29]

K. Ren, Recent developments in numerical techniques for transport-based medical imaging methods,, Commun. Comput. Phys., 8 (2010), 1. doi: 10.4208/cicp.220509.200110a. Google Scholar

[30]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, 2nd edition, (2004). Google Scholar

[31]

P. Stefanov, Inverse problems in transport theory,, in Inside Out: Inverse Problems and Applications, (2003), 111. Google Scholar

show all references

References:
[1]

S. Acosta, Time reversal for radiative transport with applications to inverse and control problems,, Inverse Problems, 29 (2013). doi: 10.1088/0266-5611/29/8/085014. Google Scholar

[2]

V. Agoshkov, Boundary Value Problems for Transport Equations,, Modeling and Simulation in Science, (1998). doi: 10.1007/978-1-4612-1994-1. Google Scholar

[3]

D. S. Anikonov, A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography,, Inverse and Ill-posed Problems Series, (2002). Google Scholar

[4]

S. Arridge and J. Schotland, Optical tomography: Forward and inverse problems,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123010. Google Scholar

[5]

S. R. Arridge, Optical tomography in medical imaging,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/2/022. Google Scholar

[6]

S. R. Arridge, Methods in diffuse optical imaging,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), 4558. doi: 10.1098/rsta.2011.0311. Google Scholar

[7]

G. Bal, Inverse transport theory and applications,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/5/053001. Google Scholar

[8]

G. Bal and O. Pinaud, Kinetic models for imaging in random media,, Multiscale Model. Simul., 6 (2007), 792. doi: 10.1137/060678464. Google Scholar

[9]

G. Bal and O. Pinaud, Imaging using transport models for wave-wave correlations,, Math. Models Methods Appl. Sci., 21 (2011), 1071. doi: 10.1142/S0218202511005258. Google Scholar

[10]

G. Bal and K. Ren, Transport-based imaging in random media,, SIAM J. Appl. Math., 68 (2008), 1738. doi: 10.1137/070690122. Google Scholar

[11]

K. M. Case and P. F. Zweifel, Linear Transport Theory,, Addison-Wesley series in nuclear engineering, (1967). Google Scholar

[12]

C. Cercignani and E. Gabetta (eds.), Transport Phenomena and Kinetic Theory. Applications to Gases, Semiconductors, Photons, and Biological Systems,, Modeling and Simulation in Science, (2007). doi: 10.1007/978-0-8176-4554-0. Google Scholar

[13]

M. Cessenat, Théorèmes de trace $L^p$ pour des espaces de fonctions de la neutronique,, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 831. Google Scholar

[14]

M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique,, C. R. Acad. Sci. Paris Sér. I Math., 300 (1985), 89. Google Scholar

[15]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6. Evolution problems. II,, Springer-Verlag, (1993). doi: 10.1007/978-3-642-58004-8. Google Scholar

[16]

T. Durduran, R. Choe, W. Baker and A. Yodh, Diffuse optics for tissue monitoring and tomography,, Rep. Prog. Phys., 73 (2010). Google Scholar

[17]

H. Egger and M. Schlottbom, An $L^p$ theory for stationary radiative transfer,, Appl. Anal., 93 (2014), 1283. doi: 10.1080/00036811.2013.826798. Google Scholar

[18]

K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations,, Graduate Texts in Mathematics, (2000). Google Scholar

[19]

A. P. Gibson, J. C. Hebden and S. R. Arridge, Recent advances in diffuse optical imaging,, Phys. Med. Biol., 50 (2005). doi: 10.1088/0031-9155/50/4/R01. Google Scholar

[20]

F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation,, J. Funct. Anal., 76 (1988), 110. doi: 10.1016/0022-1236(88)90051-1. Google Scholar

[21]

V. Isakov, Inverse Problems for Partial Differential Equations,, 2nd edition, (2006). Google Scholar

[22]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980). Google Scholar

[23]

A. D. Kim and M. Moscoso, Radiative transport theory for optical molecular imaging,, Inverse Problems, 22 (2006), 23. doi: 10.1088/0266-5611/22/1/002. Google Scholar

[24]

M. V. Klibanov and S. E. Pamyatnykh, Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate,, J. Math. Anal. Appl., 343 (2008), 352. doi: 10.1016/j.jmaa.2008.01.071. Google Scholar

[25]

M. V. Klibanov and M. Yamamoto, Exact controllability for the time dependent transport equation,, SIAM J. Control Optim., 46 (2007), 2071. doi: 10.1137/060652804. Google Scholar

[26]

M. Machida and M. Yamamoto, Global Lipschitz stability in determining coefficients of the radiative transport equation,, Inverse Problems, 30 (2014). doi: 10.1088/0266-5611/30/3/035010. Google Scholar

[27]

M. Mokhtar-Kharroubi, Mathematical Topics in Neutron Transport Theory, vol. 46 of Series on Advances in Mathematics for Applied Sciences,, World Scientific Publishing Co., (1997). doi: 10.1142/9789812819833. Google Scholar

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Applied Mathematical Sciences, (1983). doi: 10.1007/978-1-4612-5561-1. Google Scholar

[29]

K. Ren, Recent developments in numerical techniques for transport-based medical imaging methods,, Commun. Comput. Phys., 8 (2010), 1. doi: 10.4208/cicp.220509.200110a. Google Scholar

[30]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations,, 2nd edition, (2004). Google Scholar

[31]

P. Stefanov, Inverse problems in transport theory,, in Inside Out: Inverse Problems and Applications, (2003), 111. Google Scholar

[1]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[2]

I-Kun Chen, Daisuke Kawagoe. Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography. Inverse Problems & Imaging, 2019, 13 (2) : 337-351. doi: 10.3934/ipi.2019017

[3]

Guangwei Yuan, Yanzhong Yao. Parallelization methods for solving three-temperature radiation-hydrodynamic problems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1651-1669. doi: 10.3934/dcdsb.2016016

[4]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[5]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems & Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[6]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[7]

Colin Guillarmou, Antônio Sá Barreto. Inverse problems for Einstein manifolds. Inverse Problems & Imaging, 2009, 3 (1) : 1-15. doi: 10.3934/ipi.2009.3.1

[8]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[9]

Maciej Zworski. A remark on inverse problems for resonances. Inverse Problems & Imaging, 2007, 1 (1) : 225-227. doi: 10.3934/ipi.2007.1.225

[10]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

[11]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[12]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[13]

Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183

[14]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[15]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[16]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[17]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[18]

Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems & Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073

[19]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[20]

Bernard Ducomet, Šárka Nečasová. Thermalization time in a model of neutron star. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 801-818. doi: 10.3934/dcdsb.2011.16.801

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]