2015, 9(1): 239-255. doi: 10.3934/ipi.2015.9.239

On the missing bound state data of inverse spectral-scattering problems on the half-line

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaaxi 710062, China

2. 

Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

Received  March 2013 Revised  July 2014 Published  January 2015

The inverse spectral-scattering problems for the radial Schrödinger equation on the half-line are considered with a real-valued integrable potential with a finite moment. It is shown that if the potential is sufficiently smooth in a neighborhood of the origin and its derivatives are known, then it is uniquely determined on the half-line in terms of the amplitude or scattering phase of the Jost function without bound state data, that is, the bound state data is missing.
Citation: Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems & Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239
References:
[1]

P. B. Abraham and H. E. Moses, Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions,, Phys. Rev. A, 22 (1980), 1333. doi: 10.1103/PhysRevA.22.1333.

[2]

T. Aktosun, Inverse Schrödinger scattering on the line with partial knowledge of the potential,, SIAM J. Appl. Math., 56 (1996), 219. doi: 10.1137/S0036139994273995.

[3]

T. Aktosun and R. Weder, Inverse scattering with partial information on the potential,, J. Math. Anal. Appl., 270 (2002), 247. doi: 10.1016/S0022-247X(02)00070-7.

[4]

T. Aktosun and R. Weder, Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation,, Inverse Problems, 22 (2006), 89. doi: 10.1088/0266-5611/22/1/006.

[5]

I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its spectral function,, Izvestiya Akad. Nauk SSSR. Ser. Mat., 15 (1951), 309.

[6]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum,, Helv. Phys. Acta, 70 (1997), 66.

[7]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum,, Trans. Amer. Math. Soc., 352 (2000), 2765. doi: 10.1090/S0002-9947-99-02544-1.

[8]

B. Grebert and R. Weder, Reconstruction of a potential on the line that is a priori known on the half line,, SIAM J. Appl. Math., 55 (1995), 242. doi: 10.1137/S0036139993254656.

[9]

M. V. Klibanov and P. E. Sacks, Phaseless inverse scattering and the phase problem in optics,, J. Math. Phys., 33 (1992), 3813. doi: 10.1063/1.529990.

[10]

B. M. Levitan, The determination of a Sturm-Liouville operator from one or from two spectra,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), 185.

[11]

B. M. Levitan, Inverse Sturm-Liouville Problems,, VNU Science Press, (1978).

[12]

N. N. Novikova and V. M. Markushevich, Uniqueness of the solution of the one-dimensional problem of scattering for potentials located on the positive semiaxis Vychisl,, Seismol., 18 (1985), 176.

[13]

V. A. Marchenko, On reconstruction of the potential energy from phases of the scattered waves,, (Russian) Dokl. Akad. Nauk SSSR (N.S.), 104 (1955), 695.

[14]

V. A. Marchenko, Sturm-Liouville Operators and Applications,, Birkhauser, (1986). doi: 10.1007/978-3-0348-5485-6.

[15]

R. Pike and P. Sabatier, Scattering and Inverse Scattering in Pure and Applied Science,, Academic Press, (2002).

[16]

D. L. Pursey and T. Weber, Formulations of certain Gel'fand-Levitan and Marchenko equations,, Phys. Rev. A, 50 (1994), 4472. doi: 10.1103/PhysRevA.50.4472.

[17]

W. Rundell and P. Sacks, On the determination of potentials without bound state data,, J. Comput. Appl. Math., 55 (1994), 325. doi: 10.1016/0377-0427(94)90037-X.

[18]

G. Wei and H. K. Xu, Inverse spectral problem with partial information given on the potential and norming constants,, Trans. Amer. Math. Soc., 364 (2012), 3265. doi: 10.1090/S0002-9947-2011-05545-5.

show all references

References:
[1]

P. B. Abraham and H. E. Moses, Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions,, Phys. Rev. A, 22 (1980), 1333. doi: 10.1103/PhysRevA.22.1333.

[2]

T. Aktosun, Inverse Schrödinger scattering on the line with partial knowledge of the potential,, SIAM J. Appl. Math., 56 (1996), 219. doi: 10.1137/S0036139994273995.

[3]

T. Aktosun and R. Weder, Inverse scattering with partial information on the potential,, J. Math. Anal. Appl., 270 (2002), 247. doi: 10.1016/S0022-247X(02)00070-7.

[4]

T. Aktosun and R. Weder, Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation,, Inverse Problems, 22 (2006), 89. doi: 10.1088/0266-5611/22/1/006.

[5]

I. M. Gel'fand and B. M. Levitan, On the determination of a differential equation from its spectral function,, Izvestiya Akad. Nauk SSSR. Ser. Mat., 15 (1951), 309.

[6]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, I. The case of an a.c. component in the spectrum,, Helv. Phys. Acta, 70 (1997), 66.

[7]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum,, Trans. Amer. Math. Soc., 352 (2000), 2765. doi: 10.1090/S0002-9947-99-02544-1.

[8]

B. Grebert and R. Weder, Reconstruction of a potential on the line that is a priori known on the half line,, SIAM J. Appl. Math., 55 (1995), 242. doi: 10.1137/S0036139993254656.

[9]

M. V. Klibanov and P. E. Sacks, Phaseless inverse scattering and the phase problem in optics,, J. Math. Phys., 33 (1992), 3813. doi: 10.1063/1.529990.

[10]

B. M. Levitan, The determination of a Sturm-Liouville operator from one or from two spectra,, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978), 185.

[11]

B. M. Levitan, Inverse Sturm-Liouville Problems,, VNU Science Press, (1978).

[12]

N. N. Novikova and V. M. Markushevich, Uniqueness of the solution of the one-dimensional problem of scattering for potentials located on the positive semiaxis Vychisl,, Seismol., 18 (1985), 176.

[13]

V. A. Marchenko, On reconstruction of the potential energy from phases of the scattered waves,, (Russian) Dokl. Akad. Nauk SSSR (N.S.), 104 (1955), 695.

[14]

V. A. Marchenko, Sturm-Liouville Operators and Applications,, Birkhauser, (1986). doi: 10.1007/978-3-0348-5485-6.

[15]

R. Pike and P. Sabatier, Scattering and Inverse Scattering in Pure and Applied Science,, Academic Press, (2002).

[16]

D. L. Pursey and T. Weber, Formulations of certain Gel'fand-Levitan and Marchenko equations,, Phys. Rev. A, 50 (1994), 4472. doi: 10.1103/PhysRevA.50.4472.

[17]

W. Rundell and P. Sacks, On the determination of potentials without bound state data,, J. Comput. Appl. Math., 55 (1994), 325. doi: 10.1016/0377-0427(94)90037-X.

[18]

G. Wei and H. K. Xu, Inverse spectral problem with partial information given on the potential and norming constants,, Trans. Amer. Math. Soc., 364 (2012), 3265. doi: 10.1090/S0002-9947-2011-05545-5.

[1]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[2]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[3]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[4]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[5]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[6]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[7]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[8]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[9]

Hironobu Sasaki. Small data scattering for the Klein-Gordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 973-981. doi: 10.3934/dcds.2006.15.973

[10]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[11]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[12]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[13]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[14]

Hironobu Sasaki. Remark on the scattering problem for the Klein-Gordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903-911. doi: 10.3934/proc.2007.2007.903

[15]

Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457

[16]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[17]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[18]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[19]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[20]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]