2015, 9(4): 1069-1091. doi: 10.3934/ipi.2015.9.1069

A parallel space-time domain decomposition method for unsteady source inversion problems

1. 

Laboratory for Engineering and Scientific Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China

2. 

Department of Computer Science, University of Colorado, Boulder, CO 80309, United States

3. 

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Received  June 2014 Revised  November 2014 Published  October 2015

In this paper, we propose a parallel space-time domain decomposition method for solving an unsteady source identification problem governed by the linear convection-diffusion equation. Traditional approaches require to solve repeatedly a forward parabolic system, an adjoint system and a system with respect to the unknown sources. The three systems have to be solved one after another. These sequential steps are not desirable for large scale parallel computing. A space-time restrictive additive Schwarz method is proposed for a fully implicit space-time coupled discretization scheme to recover the time-dependent pollutant source intensity functions. We show with numerical experiments that the scheme works well with noise in the observation data. More importantly it is demonstrated that the parallel space-time Schwarz preconditioner is scalable on a supercomputer with over $10^3$ processors, thus promising for large scale applications.
Citation: Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069
References:
[1]

V. Akcelik, G. Biros, A. Draganescu, O. Ghattas, J. Hill and B. Waanders, Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants,, Proceedings of Supercomputing 2005, (2005). doi: 10.1109/SC.2005.25.

[2]

V. Akcelik, G. Biros, O. Ghattas, K. R. Long and B. Waanders, A variational finite element method for source inversion for convective-diffusive transport,, Finite Elements in Analysis and Design, 39 (2003), 683. doi: 10.1016/S0168-874X(03)00054-4.

[3]

J. Atmadja and A. C. Bagtzoglou, State of the art report on mathematical methods for groundwater pollution source identification,, Environmental Forensics, 2 (2001), 205. doi: 10.1006/enfo.2001.0055.

[4]

L. Baflico, S. Bernard, Y. Maday, G. Turinici and G. Zerah, Parallel-in-time molecular-dynamics simulations,, Physical Review E, 66 (2002), 2.

[5]

V. Balakrishnan, All about the Dirac Delta function(?),, Resonance, 8 (2003), 48. doi: 10.1007/BF02866759.

[6]

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith and H. Zhang, PETSc Users Manual,, Technical report, (2014).

[7]

A. Battermann, Preconditioners for Karush-Kuhn-Tucker Systems Arising in Optimal Control,, Master Thesis, (1996).

[8]

G. Biros and O. Ghattas, Parallel preconditioners for KKT systems arising in optimal control of viscous incompressible flows,, in Parallel Computational Fluid Dynamics 1999, (1999), 131. doi: 10.1016/B978-044482851-4.50017-7.

[9]

X.-C. Cai, S. Liu and J. Zou, Parallel overlapping domain decomposition methods for coupled inverse elliptic problems,, Communications in Applied Mathematics and Computational Science, 4 (2009), 1. doi: 10.2140/camcos.2009.4.1.

[10]

X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems,, SIAM Journal on Scientific Computing, 21 (1999), 792. doi: 10.1137/S106482759732678X.

[11]

Z. Chen and J. Zou, An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems,, SIAM Journal on Control and Optimization, 37 (1999), 892. doi: 10.1137/S0363012997318602.

[12]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, $1^{st}$ edition, (1978).

[13]

X. M. Deng, Y. B. Zhao and J. Zou, On linear finite elements for simultaneously recovering source location and intensity,, International Journal of Numerical Analysis and Modeling, 10 (2013), 588.

[14]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-1740-8.

[15]

C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications,, International Journal for Numerical Methods in Engineering, 58 (2003), 1397. doi: 10.1002/nme.860.

[16]

M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm,, Domain Decomposition Methods in Science and Engineering XVII, (2008), 45. doi: 10.1007/978-3-540-75199-1_4.

[17]

S. Gorelick, B. Evans and I. Remson, Identifying sources of groundwater pullution: An optimization approach,, Water Resources Research, 19 (1983), 779.

[18]

E. Haber, A parallel method for large scale time domain electromagnetic inverse problems,, Applied Numerical Mathematics, 58 (2008), 422. doi: 10.1016/j.apnum.2007.01.017.

[19]

A. Hamdi, The recovery of a time-dependent point source in a linear transport equation: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075006.

[20]

A. Hamdi, Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/11/115009.

[21]

B. Jin and J. Zou, Numerical estimation of the Robin coefficient in a stationary diffusion equation,, IMA Journal of Numerical Analysis, 30 (2010), 677. doi: 10.1093/imanum/drn066.

[22]

Y. L. Keung and J. Zou, Numerical identifications of parameters in parabolic systems,, Inverse Problems, 14 (1998), 83. doi: 10.1088/0266-5611/14/1/009.

[23]

Y. L. Keung and J. Zou, An efficient linear solver for nonlinear parameter identification problems,, SIAM Journal on Scientific Computing, 22 (2000), 1511. doi: 10.1137/S1064827598346740.

[24]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, in Proceedings of 2nd Berkeley Symposium, (1951), 481.

[25]

J.-L. Lions, Y. Maday and G. Turinici, A "parareal" in time discretization of PDEs,, ComptesRendus de l'Academie des Sciences Series I Mathematics, 332 (2001), 661. doi: 10.1016/S0764-4442(00)01793-6.

[26]

X. Liu, Identification of Indoor Airborne Contaminant Sources with Probability-Based Inverse Modeling Methods,, Ph.D. Thesis, (2008).

[27]

X. Liu and Z. Zhai, Inverse modeling methods for indoor airborne pollutant tracking literature review and fundamentals,, Indoor Air, 17 (2007), 419. doi: 10.1111/j.1600-0668.2007.00497.x.

[28]

Y. Maday and G. Turinici, Parallel in time algorithms for quantum control: Parareal time discretization scheme,, International Journal of Quantum Chemistry, 93 (2003), 223. doi: 10.1002/qua.10554.

[29]

Y. Maday and G. Turinici, The parareal in time iterative solver: A further direction to parallel implementation,, in Domain Decomposition Methods in Science and Engineering, (2005), 441. doi: 10.1007/3-540-26825-1_45.

[30]

G. Nunnari, A. Nucifora and C. Randieri, The application of neural techniques to the modelling of time-series of atmospheric pollution data,, Ecological Modelling, 111 (1998), 187. doi: 10.1016/S0304-3800(98)00118-5.

[31]

E. Prudencio, R. Byrd and X.-C. Cai, Parallel full space SQP Lagrange-Newton-Krylov-Schwarz algorithms for PDE-constrained optimization problems,, SIAM Journal on Scientific Computing, 27 (2006), 1305. doi: 10.1137/040602997.

[32]

R. Revelli and L. Ridolfi, Nonlinear convection-dispersion models with a localized pollutant source II-a class of inverse problems,, Mathematical and Computer Modelling, 42 (2005), 601. doi: 10.1016/j.mcm.2004.06.023.

[33]

Y. Saad, Iterative Methods for Sparse Linear Systems,, $2^{nd}$ edition, (2003). doi: 10.1137/1.9780898718003.

[34]

A. Samarskii and P. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics,, Walter de Gruyter, (2007). doi: 10.1515/9783110205794.

[35]

T. Skaggs and Z. Kabala, Recovering the release history of a groundwater contaminant,, Water Resources Research, 30 (1994), 71. doi: 10.1029/93WR02656.

[36]

T. Skaggs and Z. Kabala, Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility,, Water Resources Research, 31 (1995), 2669. doi: 10.1029/95WR02383.

[37]

M. Snodgrass and P. Kitanidis, A geostatistical approach to contaminant source identification,, Water Resources Research, 33 (1997), 537. doi: 10.1029/96WR03753.

[38]

G. Staff and E. Ronquist, Stability of the parareal algorithm,, in Domain Decomposition Methods in Science and Engineering, (2005), 449. doi: 10.1007/3-540-26825-1_46.

[39]

A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory,, Springer, (2005).

[40]

J. Wong and P. Yuan, A FE-based algorithm for the inverse natural convection problem,, International Journal for Numerical Methods in Fluids, 68 (2012), 48. doi: 10.1002/fld.2494.

[41]

A. Woodbury, Inverse Engineering Handbook,, CRC Press, (2003).

[42]

J. L. Xie and J. Zou, Numerical reconstruction of heat fluxes,, SIAM Journal on Numerical Analysis, 43 (2005), 1504. doi: 10.1137/030602551.

[43]

C. Yang, J. Cao and X.-C. Cai, A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere,, SIAM Journal on Scientific Computing, 32 (2010), 418. doi: 10.1137/080727348.

[44]

H. Yang, E. Prudencio and X.-C. Cai, Fully implicit Lagrange-Newton-Krylov-Schwarz algorithms for boundary control of unsteady incompressible flows,, International Journal for Numerical Methods in Engineering, 91 (2012), 644. doi: 10.1002/nme.4286.

[45]

X. Zhang, C. X. Zhu, G. D. Feng, H. H. Zhu and P. Guo, Potential use of bacteroidales specific 16S rRNA in tracking the rural pond-drinking water pollution,, Journal of Agro-Environment Science, 30 (2011), 1880.

[46]

B. Q. Zhu, Y. W. Chen and J. H. Peng, Lead isotope geochemistry of the urban environment in the Pearl River Delta,, Applied Geochemistry, 16 (2001), 409.

show all references

References:
[1]

V. Akcelik, G. Biros, A. Draganescu, O. Ghattas, J. Hill and B. Waanders, Dynamic data-driven inversion for terascale simulations: Real-time identification of airborne contaminants,, Proceedings of Supercomputing 2005, (2005). doi: 10.1109/SC.2005.25.

[2]

V. Akcelik, G. Biros, O. Ghattas, K. R. Long and B. Waanders, A variational finite element method for source inversion for convective-diffusive transport,, Finite Elements in Analysis and Design, 39 (2003), 683. doi: 10.1016/S0168-874X(03)00054-4.

[3]

J. Atmadja and A. C. Bagtzoglou, State of the art report on mathematical methods for groundwater pollution source identification,, Environmental Forensics, 2 (2001), 205. doi: 10.1006/enfo.2001.0055.

[4]

L. Baflico, S. Bernard, Y. Maday, G. Turinici and G. Zerah, Parallel-in-time molecular-dynamics simulations,, Physical Review E, 66 (2002), 2.

[5]

V. Balakrishnan, All about the Dirac Delta function(?),, Resonance, 8 (2003), 48. doi: 10.1007/BF02866759.

[6]

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith and H. Zhang, PETSc Users Manual,, Technical report, (2014).

[7]

A. Battermann, Preconditioners for Karush-Kuhn-Tucker Systems Arising in Optimal Control,, Master Thesis, (1996).

[8]

G. Biros and O. Ghattas, Parallel preconditioners for KKT systems arising in optimal control of viscous incompressible flows,, in Parallel Computational Fluid Dynamics 1999, (1999), 131. doi: 10.1016/B978-044482851-4.50017-7.

[9]

X.-C. Cai, S. Liu and J. Zou, Parallel overlapping domain decomposition methods for coupled inverse elliptic problems,, Communications in Applied Mathematics and Computational Science, 4 (2009), 1. doi: 10.2140/camcos.2009.4.1.

[10]

X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems,, SIAM Journal on Scientific Computing, 21 (1999), 792. doi: 10.1137/S106482759732678X.

[11]

Z. Chen and J. Zou, An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems,, SIAM Journal on Control and Optimization, 37 (1999), 892. doi: 10.1137/S0363012997318602.

[12]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, $1^{st}$ edition, (1978).

[13]

X. M. Deng, Y. B. Zhao and J. Zou, On linear finite elements for simultaneously recovering source location and intensity,, International Journal of Numerical Analysis and Modeling, 10 (2013), 588.

[14]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996). doi: 10.1007/978-94-009-1740-8.

[15]

C. Farhat and M. Chandesris, Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications,, International Journal for Numerical Methods in Engineering, 58 (2003), 1397. doi: 10.1002/nme.860.

[16]

M. J. Gander and E. Hairer, Nonlinear convergence analysis for the parareal algorithm,, Domain Decomposition Methods in Science and Engineering XVII, (2008), 45. doi: 10.1007/978-3-540-75199-1_4.

[17]

S. Gorelick, B. Evans and I. Remson, Identifying sources of groundwater pullution: An optimization approach,, Water Resources Research, 19 (1983), 779.

[18]

E. Haber, A parallel method for large scale time domain electromagnetic inverse problems,, Applied Numerical Mathematics, 58 (2008), 422. doi: 10.1016/j.apnum.2007.01.017.

[19]

A. Hamdi, The recovery of a time-dependent point source in a linear transport equation: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075006.

[20]

A. Hamdi, Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: Application to surface water pollution,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/11/115009.

[21]

B. Jin and J. Zou, Numerical estimation of the Robin coefficient in a stationary diffusion equation,, IMA Journal of Numerical Analysis, 30 (2010), 677. doi: 10.1093/imanum/drn066.

[22]

Y. L. Keung and J. Zou, Numerical identifications of parameters in parabolic systems,, Inverse Problems, 14 (1998), 83. doi: 10.1088/0266-5611/14/1/009.

[23]

Y. L. Keung and J. Zou, An efficient linear solver for nonlinear parameter identification problems,, SIAM Journal on Scientific Computing, 22 (2000), 1511. doi: 10.1137/S1064827598346740.

[24]

H. W. Kuhn and A. W. Tucker, Nonlinear programming,, in Proceedings of 2nd Berkeley Symposium, (1951), 481.

[25]

J.-L. Lions, Y. Maday and G. Turinici, A "parareal" in time discretization of PDEs,, ComptesRendus de l'Academie des Sciences Series I Mathematics, 332 (2001), 661. doi: 10.1016/S0764-4442(00)01793-6.

[26]

X. Liu, Identification of Indoor Airborne Contaminant Sources with Probability-Based Inverse Modeling Methods,, Ph.D. Thesis, (2008).

[27]

X. Liu and Z. Zhai, Inverse modeling methods for indoor airborne pollutant tracking literature review and fundamentals,, Indoor Air, 17 (2007), 419. doi: 10.1111/j.1600-0668.2007.00497.x.

[28]

Y. Maday and G. Turinici, Parallel in time algorithms for quantum control: Parareal time discretization scheme,, International Journal of Quantum Chemistry, 93 (2003), 223. doi: 10.1002/qua.10554.

[29]

Y. Maday and G. Turinici, The parareal in time iterative solver: A further direction to parallel implementation,, in Domain Decomposition Methods in Science and Engineering, (2005), 441. doi: 10.1007/3-540-26825-1_45.

[30]

G. Nunnari, A. Nucifora and C. Randieri, The application of neural techniques to the modelling of time-series of atmospheric pollution data,, Ecological Modelling, 111 (1998), 187. doi: 10.1016/S0304-3800(98)00118-5.

[31]

E. Prudencio, R. Byrd and X.-C. Cai, Parallel full space SQP Lagrange-Newton-Krylov-Schwarz algorithms for PDE-constrained optimization problems,, SIAM Journal on Scientific Computing, 27 (2006), 1305. doi: 10.1137/040602997.

[32]

R. Revelli and L. Ridolfi, Nonlinear convection-dispersion models with a localized pollutant source II-a class of inverse problems,, Mathematical and Computer Modelling, 42 (2005), 601. doi: 10.1016/j.mcm.2004.06.023.

[33]

Y. Saad, Iterative Methods for Sparse Linear Systems,, $2^{nd}$ edition, (2003). doi: 10.1137/1.9780898718003.

[34]

A. Samarskii and P. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics,, Walter de Gruyter, (2007). doi: 10.1515/9783110205794.

[35]

T. Skaggs and Z. Kabala, Recovering the release history of a groundwater contaminant,, Water Resources Research, 30 (1994), 71. doi: 10.1029/93WR02656.

[36]

T. Skaggs and Z. Kabala, Recovering the history of a groundwater contaminant plume: Method of quasi-reversibility,, Water Resources Research, 31 (1995), 2669. doi: 10.1029/95WR02383.

[37]

M. Snodgrass and P. Kitanidis, A geostatistical approach to contaminant source identification,, Water Resources Research, 33 (1997), 537. doi: 10.1029/96WR03753.

[38]

G. Staff and E. Ronquist, Stability of the parareal algorithm,, in Domain Decomposition Methods in Science and Engineering, (2005), 449. doi: 10.1007/3-540-26825-1_46.

[39]

A. Toselli and O. Widlund, Domain Decomposition Methods-Algorithms and Theory,, Springer, (2005).

[40]

J. Wong and P. Yuan, A FE-based algorithm for the inverse natural convection problem,, International Journal for Numerical Methods in Fluids, 68 (2012), 48. doi: 10.1002/fld.2494.

[41]

A. Woodbury, Inverse Engineering Handbook,, CRC Press, (2003).

[42]

J. L. Xie and J. Zou, Numerical reconstruction of heat fluxes,, SIAM Journal on Numerical Analysis, 43 (2005), 1504. doi: 10.1137/030602551.

[43]

C. Yang, J. Cao and X.-C. Cai, A fully implicit domain decomposition algorithm for shallow water equations on the cubed-sphere,, SIAM Journal on Scientific Computing, 32 (2010), 418. doi: 10.1137/080727348.

[44]

H. Yang, E. Prudencio and X.-C. Cai, Fully implicit Lagrange-Newton-Krylov-Schwarz algorithms for boundary control of unsteady incompressible flows,, International Journal for Numerical Methods in Engineering, 91 (2012), 644. doi: 10.1002/nme.4286.

[45]

X. Zhang, C. X. Zhu, G. D. Feng, H. H. Zhu and P. Guo, Potential use of bacteroidales specific 16S rRNA in tracking the rural pond-drinking water pollution,, Journal of Agro-Environment Science, 30 (2011), 1880.

[46]

B. Q. Zhu, Y. W. Chen and J. H. Peng, Lead isotope geochemistry of the urban environment in the Pearl River Delta,, Applied Geochemistry, 16 (2001), 409.

[1]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[2]

Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185

[3]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2017216

[4]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems . Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[5]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[6]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[7]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[8]

Hongtruong Pham, Xiwen Lu. The inverse parallel machine scheduling problem with minimum total completion time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 613-620. doi: 10.3934/jimo.2014.10.613

[9]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

[10]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[11]

Gerard A. Maugin, Martine Rousseau. Prolegomena to studies on dynamic materials and their space-time homogenization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1599-1608. doi: 10.3934/dcdss.2013.6.1599

[12]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[13]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[14]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[15]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[16]

Rodrigo I. Brevis, Jaime H. Ortega, David Pardo. A source time reversal method for seismicity induced by mining. Inverse Problems & Imaging, 2017, 11 (1) : 25-45. doi: 10.3934/ipi.2017002

[17]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems & Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[18]

Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749

[19]

Xiaoliang Cheng, Rongfang Gong, Weimin Han. A new Kohn-Vogelius type formulation for inverse source problems. Inverse Problems & Imaging, 2015, 9 (4) : 1051-1067. doi: 10.3934/ipi.2015.9.1051

[20]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]