August  2014, 8(3): 779-794. doi: 10.3934/ipi.2014.8.779

Detecting the localization of elastic inclusions and Lamé coefficients

1. 

CEMAT-IST and Departamento de Matemática, Faculdade de Ciências e Tecnologia (NULisbon), Universidade Nova de Lisboa, Quinta da Torre, Caparica, Portugal

Received  July 2013 Revised  July 2014 Published  August 2014

In this paper we develop and analyse a direct method, based on the so called reciprocity gap functional, for retrieving the location of an elastic inclusion. The method requires a pair of displacement (imposed) and traction (measured) data, on an accessible part of the boundary. We provide a criterion for the choice of displacement that, in one hand, provides more accurate results and on the other, does not require the Lamé parameters of background medium. We use this property to develop a two boundary measurements direct method for retrieving both Lamé parameters. Several numerical examples are presented in order to illustrate the accuracy and stability of the proposed methods.
Citation: Nuno F. M. Martins. Detecting the localization of elastic inclusions and Lamé coefficients. Inverse Problems & Imaging, 2014, 8 (3) : 779-794. doi: 10.3934/ipi.2014.8.779
References:
[1]

C. J. S. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium,, SIAM Journal on Applied Mathematics, 62 (2001), 94. doi: 10.1137/S0036139900369266. Google Scholar

[2]

C. J. S. Alves, M. J. Colaço, V. M. A. Leitão, N. F. M. Martins, H. R. B. Orlande and N. C. Roberty, Recovering the source term in a linear diffusion problem by the Method of Fundamental Solutions,, Inverse Problems in Science and Engineering, 16 (2008), 1005. doi: 10.1080/17415970802083243. Google Scholar

[3]

C. J. S. Alves and N. F. M. Martins, Reconstruction of inclusions or cavities in potential problems using the MFS,, in The Method of Fundamental Solutions-A Meshless Method (eds. C. S. Chen, (2008), 51. Google Scholar

[4]

C. J. S. Alves and N. F. M. Martins, The direct method of fundamental solutions and the inverse Kirsch-Kress method for the reconstruction of elastic inclusions or cavities,, Journal of Integral Equations and Applications, 21 (2009), 153. doi: 10.1216/JIE-2009-21-2-153. Google Scholar

[5]

C. J. S. Alves, N. F. M. Martins and N. C. Roberty, Full identification of acoustic sources with multiple frequencies and boundary measurements,, Inverse Problems and Imaging, 3 (2009), 275. doi: 10.3934/ipi.2009.3.275. Google Scholar

[6]

C. J. S. Alves and N. C. Roberty, On the identification of star shape sources from boundary measurements using a reciprocity functional,, Inverse Problems in Science and Engineering, 17 (2009), 187. doi: 10.1080/17415970802082799. Google Scholar

[7]

S. Andrieux and A. B. Abda, The reciprocity gap: A general concept for flaws identification,, Mechanics Research Communication, 20 (1993), 415. doi: 10.1016/0093-6413(93)90032-J. Google Scholar

[8]

G. Chen and J. Zhou, Boundary Element Methods,, Computational Mathematics and Applications, (1992). Google Scholar

[9]

M. J. Colaço and C. J. S. Alves, A fast non-intrusive method for estimating spatial thermal contact conductante by means of the reciprocity functional approach and the method of fundamental solutions,, International Journal of Heat and Mass Transfer, 60 (2013), 653. Google Scholar

[10]

S. Cox and M. Gockenbach, Recovering planar Lamé moduli from a single traction experiment,, Mathematics and Mechanics of Solids, 2 (1997), 297. doi: 10.1177/108128659700200304. Google Scholar

[11]

A. El-Badia and T. Ha Duong, Some remarks on the problem of source identification from boundary measurements,, Inverse Problems, 14 (1998), 883. doi: 10.1088/0266-5611/14/4/008. Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[13]

M. S. Gockenbach, B. Jadamba and A. A. Khan, Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters,, Inverse Problems in Science and Engineering, 16 (2008), 349. doi: 10.1080/17415970701602580. Google Scholar

[14]

B. Jadamba, A. A. Khan and F. Raciti, On the inverse problem of identifying Lamé coefficients in linear elasticity,, Computers and Mathematics with Applications, 56 (2008), 431. doi: 10.1016/j.camwa.2007.12.016. Google Scholar

[15]

Y. Liu, L. Z. Sun and G. Wang, Tomography based 3D anisotropic elastography using boundary measurements,, IEEE Transactions on Medical Imaging, 24 (2005), 1323. Google Scholar

[16]

L. Marin, L. L. Elliot, D. B. Ingham and D. Lesnic, Identification of material properties and cavities in two-dimensional linear elasticity,, Computational Mechanics, 31 (2003), 293. Google Scholar

[17]

N. F. M. Martins and D. Soares, Localization of Immersed Obstacles from a Pair of Boundary Data,, Proceedings of Jornadas do Mar, (2012). Google Scholar

[18]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000). Google Scholar

[19]

G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements,, American Journal of Mathematics, 115 (1993), 1161. doi: 10.2307/2375069. Google Scholar

[20]

N. Tlatli-Hariga, R. Bouhlila and A. B. Abda, Recovering data in groundwater: Boundary conditions and well's positions and fluxes,, Computational Geosciences, 15 (2011), 637. doi: 10.1007/s10596-011-9231-9. Google Scholar

show all references

References:
[1]

C. J. S. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium,, SIAM Journal on Applied Mathematics, 62 (2001), 94. doi: 10.1137/S0036139900369266. Google Scholar

[2]

C. J. S. Alves, M. J. Colaço, V. M. A. Leitão, N. F. M. Martins, H. R. B. Orlande and N. C. Roberty, Recovering the source term in a linear diffusion problem by the Method of Fundamental Solutions,, Inverse Problems in Science and Engineering, 16 (2008), 1005. doi: 10.1080/17415970802083243. Google Scholar

[3]

C. J. S. Alves and N. F. M. Martins, Reconstruction of inclusions or cavities in potential problems using the MFS,, in The Method of Fundamental Solutions-A Meshless Method (eds. C. S. Chen, (2008), 51. Google Scholar

[4]

C. J. S. Alves and N. F. M. Martins, The direct method of fundamental solutions and the inverse Kirsch-Kress method for the reconstruction of elastic inclusions or cavities,, Journal of Integral Equations and Applications, 21 (2009), 153. doi: 10.1216/JIE-2009-21-2-153. Google Scholar

[5]

C. J. S. Alves, N. F. M. Martins and N. C. Roberty, Full identification of acoustic sources with multiple frequencies and boundary measurements,, Inverse Problems and Imaging, 3 (2009), 275. doi: 10.3934/ipi.2009.3.275. Google Scholar

[6]

C. J. S. Alves and N. C. Roberty, On the identification of star shape sources from boundary measurements using a reciprocity functional,, Inverse Problems in Science and Engineering, 17 (2009), 187. doi: 10.1080/17415970802082799. Google Scholar

[7]

S. Andrieux and A. B. Abda, The reciprocity gap: A general concept for flaws identification,, Mechanics Research Communication, 20 (1993), 415. doi: 10.1016/0093-6413(93)90032-J. Google Scholar

[8]

G. Chen and J. Zhou, Boundary Element Methods,, Computational Mathematics and Applications, (1992). Google Scholar

[9]

M. J. Colaço and C. J. S. Alves, A fast non-intrusive method for estimating spatial thermal contact conductante by means of the reciprocity functional approach and the method of fundamental solutions,, International Journal of Heat and Mass Transfer, 60 (2013), 653. Google Scholar

[10]

S. Cox and M. Gockenbach, Recovering planar Lamé moduli from a single traction experiment,, Mathematics and Mechanics of Solids, 2 (1997), 297. doi: 10.1177/108128659700200304. Google Scholar

[11]

A. El-Badia and T. Ha Duong, Some remarks on the problem of source identification from boundary measurements,, Inverse Problems, 14 (1998), 883. doi: 10.1088/0266-5611/14/4/008. Google Scholar

[12]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[13]

M. S. Gockenbach, B. Jadamba and A. A. Khan, Equation error approach for elliptic inverse problems with an application to the identification of Lamé parameters,, Inverse Problems in Science and Engineering, 16 (2008), 349. doi: 10.1080/17415970701602580. Google Scholar

[14]

B. Jadamba, A. A. Khan and F. Raciti, On the inverse problem of identifying Lamé coefficients in linear elasticity,, Computers and Mathematics with Applications, 56 (2008), 431. doi: 10.1016/j.camwa.2007.12.016. Google Scholar

[15]

Y. Liu, L. Z. Sun and G. Wang, Tomography based 3D anisotropic elastography using boundary measurements,, IEEE Transactions on Medical Imaging, 24 (2005), 1323. Google Scholar

[16]

L. Marin, L. L. Elliot, D. B. Ingham and D. Lesnic, Identification of material properties and cavities in two-dimensional linear elasticity,, Computational Mechanics, 31 (2003), 293. Google Scholar

[17]

N. F. M. Martins and D. Soares, Localization of Immersed Obstacles from a Pair of Boundary Data,, Proceedings of Jornadas do Mar, (2012). Google Scholar

[18]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations,, Cambridge University Press, (2000). Google Scholar

[19]

G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurements,, American Journal of Mathematics, 115 (1993), 1161. doi: 10.2307/2375069. Google Scholar

[20]

N. Tlatli-Hariga, R. Bouhlila and A. B. Abda, Recovering data in groundwater: Boundary conditions and well's positions and fluxes,, Computational Geosciences, 15 (2011), 637. doi: 10.1007/s10596-011-9231-9. Google Scholar

[1]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[2]

Peter Monk, Jiguang Sun. Inverse scattering using finite elements and gap reciprocity. Inverse Problems & Imaging, 2007, 1 (4) : 643-660. doi: 10.3934/ipi.2007.1.643

[3]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems & Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[4]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[5]

Fang Zeng, Xiaodong Liu, Jiguang Sun, Liwei Xu. The reciprocity gap method for a cavity in an inhomogeneous medium. Inverse Problems & Imaging, 2016, 10 (3) : 855-868. doi: 10.3934/ipi.2016024

[6]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[7]

Elena Beretta, Elisa Francini, Sergio Vessella. Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements. Inverse Problems & Imaging, 2014, 8 (3) : 611-644. doi: 10.3934/ipi.2014.8.611

[8]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[9]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[10]

Rafael Ortega, Andrés Rivera. Global bifurcations from the center of mass in the Sitnikov problem. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 719-732. doi: 10.3934/dcdsb.2010.14.719

[11]

Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems & Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599

[12]

Claudio Buzzi, Claudio Pessoa, Joan Torregrosa. Piecewise linear perturbations of a linear center. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3915-3936. doi: 10.3934/dcds.2013.33.3915

[13]

Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure & Applied Analysis, 2009, 8 (1) : 95-121. doi: 10.3934/cpaa.2009.8.95

[14]

Ingrid Daubechies, Gerd Teschke, Luminita Vese. Iteratively solving linear inverse problems under general convex constraints. Inverse Problems & Imaging, 2007, 1 (1) : 29-46. doi: 10.3934/ipi.2007.1.29

[15]

Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965

[16]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[17]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[18]

Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks & Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523

[19]

Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Networks & Heterogeneous Media, 2009, 4 (4) : 789-812. doi: 10.3934/nhm.2009.4.789

[20]

S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]